[发明专利]用于生成图像超分辨率模型的方法和装置在审
申请号: | 201910086001.5 | 申请日: | 2019-01-29 |
公开(公告)号: | CN109872276A | 公开(公告)日: | 2019-06-11 |
发明(设计)人: | 李可;姜宇宁;李磊 | 申请(专利权)人: | 北京字节跳动网络技术有限公司 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06N3/08 |
代理公司: | 北京英赛嘉华知识产权代理有限责任公司 11204 | 代理人: | 王达佐;马晓亚 |
地址: | 100041 北京市石景山区*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本公开的实施例公开了用于生成图像超分辨率模型的方法和装置。该方法的一具体实施方式包括:获取训练样本集合,其中,训练样本包括预设分辨率的初始样本图像和预设数量个样本大分辨率图像;获取初始生成对抗网络;利用机器学习方法,将训练样本集合中的训练样本包括的初始样本图像作为预设数量个级联的生成网络中的第一级生成网络的输入,以及对于预设数量个级联的生成网络中的生成网络,将该生成网络输出的大分辨率图像与样本大分辨率图像作为对应的判别网络的输入,对初始生成对抗网络进行训练,将训练后的预设数量个级联的生成网络确定为图像超分辨率模型。该实施方式有助于提高利用图像超分辨率模型生成超分辨率图像的清晰度。 | ||
搜索关键词: | 预设 大分辨率图像 网络 级联 图像超分辨率 训练样本集合 方法和装置 超分辨率 生成图像 训练样本 样本图像 样本 超分辨率图像 机器学习 模型生成 网络确定 网络输出 第一级 对抗 分辨率 | ||
【主权项】:
1.一种用于生成图像超分辨率模型的方法,包括:获取训练样本集合,其中,训练样本包括预设分辨率的初始样本图像和预设数量个样本大分辨率图像;获取初始生成对抗网络,其中,所述初始生成对抗网络包括预设数量个级联的生成网络和预设数量个判别网络,生成网络与判别网络一一对应;利用机器学习方法,将所述训练样本集合中的训练样本包括的初始样本图像作为所述预设数量个级联的生成网络中的第一级生成网络的输入,以及对于所述预设数量个级联的生成网络中的生成网络,将该生成网络输出的大分辨率图像与样本大分辨率图像作为对应的判别网络的输入,对所述初始生成对抗网络进行训练,将训练后的预设数量个级联的生成网络确定为图像超分辨率模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京字节跳动网络技术有限公司,未经北京字节跳动网络技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910086001.5/,转载请声明来源钻瓜专利网。