[发明专利]一种基于LSTM的分级式无线信号调制类型识别方法有效
申请号: | 201910089087.7 | 申请日: | 2019-01-30 |
公开(公告)号: | CN109873779B | 公开(公告)日: | 2021-05-11 |
发明(设计)人: | 陈晋音;郑海斌;蒋焘 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | H04L27/00 | 分类号: | H04L27/00;G06K9/62 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 曹兆霞 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于LSTM的分级式无线信号调制类型识别方法,包括(1)对获取的无线信号样本进行归一化处理和K‑means聚类,(2)构建信噪比分类网络,利用无线信号样本训练信噪比分类网络,获得信噪比分类模型;(3)对信噪比不大于0dB的无线信号进行滤波降噪处理;(4)在步骤(3)之后,针对每类信噪比构建一个无线信号调制类型识别网络,利用与信噪比等级对应的无线信号子集训练无线信号调制类型识别网络,最终获得k个无线信号调制类型识别模型;(5)将待识别无线信号经归一化处理后输入至信噪比分类模型中,根据获得的信噪比等级,选择对应的无线信号调制类型识别模型进行识别,输出调制类型。 | ||
搜索关键词: | 一种 基于 lstm 分级 无线 信号 调制 类型 识别 方法 | ||
【主权项】:
1.一种基于LSTM的分级式无线信号调制类型识别方法,包括以下步骤:(1)对获取的无线信号样本进行归一化处理,采用K均值聚类方法将归一化处理后的无线信号样本按照信噪比聚成k类,形成k个无线信号子集,每类的聚类中心作为无线信号子集中无线信号样本的信噪比标签;(2)针对所有无线信号样本构建一个信噪比分类网络,并利用无线信号样本及对应的信噪比标签作为训练样本,对信噪比分类网络进行训练,获得信噪比分类模型;(3)对信噪比不大于0dB的无线信号子集中的无线信号进行滤波降噪处理;(4)在步骤(3)之后,针对每类信噪比等级构建一个无线信号调制类型识别网络,利用与信噪比等级对应的无线信号子集中无线信号样本及无线信号样本对应的调制类型作为训练样本,训练无线信号调制类型识别网络,最终获得k个无线信号调制类型识别模型;(5)将待识别无线信号经归一化处理后输入至信噪比分类模型中,获得该待识别信号的信噪比等级,并根据信噪比等级,将待识别无线信号输入至与信噪比等级对应的无线信号调制类型识别模型中,经计算获得待识别无线信号的调制类型;其中,信噪比分类网络和无线信号调制类型识别网络均采用LSTM神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910089087.7/,转载请声明来源钻瓜专利网。