[发明专利]基于R-SVM的TFT-LCD工业智能预测方法在审
申请号: | 201910092644.0 | 申请日: | 2019-01-30 |
公开(公告)号: | CN109871992A | 公开(公告)日: | 2019-06-11 |
发明(设计)人: | 张涛;冯宇婷;郝兵 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/04 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于R‑SVM的TFT‑LCD工业智能预测方法,本发明将传统svm与随机森林的思想进行了结合,使最终预测结果,更加具有鲁棒性,更可靠。同时,svm本身就适用于高维数据,大型特征空间的训练,在小样本数据上表现较好。实现该方法的核心过程在于样本与特征集合的构建并与最终svm的结合上。传统的svm模型对于特征与样本集合不做太多的筛选与判断,对于整个样本集合都选择直接放入模型中进行训练。基于随机森林的思想,本发明考虑在模型训练的过程中,组成多个不同的样本集与特征集并且结合传统的svm模型进行训练。将训练得到的多个svm模型再对最后的验证集分别进行预测,取所有预测的均值作为最终的预测结果。 | ||
搜索关键词: | 预测 工业智能 随机森林 样本集合 预测结果 传统的 高维数据 核心过程 模型训练 特征集合 特征空间 鲁棒性 特征集 小样本 验证集 样本集 放入 构建 样本 筛选 表现 | ||
【主权项】:
1.基于R‑SVM的TFT‑LCD工业智能预测方法,其特征在于:本方法数据来源于阿里天池工业智能制造质量预测公开数据集,数据列包括生产TFT‑LCD的工业制作过程。共有8029列,600个样本;该方法的实现过程包括如下步骤,步骤1,数据预处理;步骤2,pca降维;步骤3,模型搭建;步骤4,多模型判断优异;步骤5,模型预测;步骤6,mse判定。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910092644.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理