[发明专利]一种用于细粒度分类的目标检测方法及设备有效
申请号: | 201910101320.9 | 申请日: | 2019-01-31 |
公开(公告)号: | CN109858552B | 公开(公告)日: | 2021-01-26 |
发明(设计)人: | 陈海波 | 申请(专利权)人: | 深兰科技(上海)有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京同达信恒知识产权代理有限公司 11291 | 代理人: | 黄志华 |
地址: | 200336 上海市长宁区威*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于细粒度分类的目标检测方法及设备,涉及计算机视觉技术领域,用以解决现有技术中,目标检测时往往对目标图像的局部特征提取不够精细,或提取到不同细分类别的目标图像的局部特征间的区分度不够大,进而导致检测出的目标的类别不够细化的问题,本发明方法包括:获取目标的目标图像,通过预先构建的目标检测网络模型对所述目标图像进行目标检测,获得所述目标图像中目标的分类及位置,所述预先构建的目标检测网络模型中包括用于调整模型参数的分类损失函数,其中,构建目标检测网络模型过程中根据所述分类损失函数调整模型参数,使所述目标检测网络模型区分目标所属分类及同一类目标所属子分类。 | ||
搜索关键词: | 一种 用于 细粒度 分类 目标 检测 方法 设备 | ||
【主权项】:
1.一种用于细粒度分类的目标检测方法,其特征在于,该方法包括:获取目标的目标图像;通过预先构建的目标检测网络模型对所述目标图像进行目标检测,获得所述目标图像中目标的分类及位置,所述预先构建的目标检测网络模型中包括用于调整模型参数的分类损失函数,其中,构建目标检测网络模型过程中根据所述分类损失函数调整模型参数,使所述目标检测网络模型区分目标所属分类及同一类目标所属子分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深兰科技(上海)有限公司,未经深兰科技(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910101320.9/,转载请声明来源钻瓜专利网。