[发明专利]一种基于深度学习的用电量预测方法、装置及设备有效

专利信息
申请号: 201910109904.0 申请日: 2019-02-11
公开(公告)号: CN109685290B 公开(公告)日: 2023-06-16
发明(设计)人: 赵云;肖勇;何恒靖;钱斌;周密;郑楷洪 申请(专利权)人: 南方电网科学研究院有限责任公司;中国南方电网有限责任公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/08;G06N3/0442
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 罗满
地址: 510663 广东省广州市萝岗区科*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的用电量预测方法,采用包括长短期记忆网络LSTM嵌入块的序列到序列seq2seq模型为预测模型,增强了序列到序列seq2seq模型的可学习型和表达性,利用包括历史时间序列和外源性特征数据的历史用电数据训练得到该预测模型,使预测模型除了时间特征外,还对外源性特征进行学习和表达,增加了对影响用电量趋势的多个因素的约束,从而得到了更贴近用电量实际状况的预测模型,通过该预测模型对用电量进行预测,得到了更为准确的用电量预测结果。本发明还提供一种基于深度学习的用电量预测装置及设备,具有上述有益效果。
搜索关键词: 一种 基于 深度 学习 用电量 预测 方法 装置 设备
【主权项】:
1.一种基于深度学习的用电量预测方法,其特征在于,包括:预先根据历史用电数据训练预测模型;接收输入的电量预测查询时间和外源性特征参数;将所述电量预测查询时间和所述外源性特征参数输入所述预测模型,输出用电量预测值;其中,所述历史用电数据包括历史时间序列和所述历史时间序列的外源性特征数据,所述预测模型具体为包括长短期记忆网络LSTM嵌入块的序列到序列seq2seq模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南方电网科学研究院有限责任公司;中国南方电网有限责任公司,未经南方电网科学研究院有限责任公司;中国南方电网有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910109904.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top