[发明专利]一种新的高光谱图像数据半监督分类方法有效
申请号: | 201910113156.3 | 申请日: | 2019-02-13 |
公开(公告)号: | CN109858557B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 阎庆;张凯琳;丁云;张晶晶;寻丽娜 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06V10/774 | 分类号: | G06V10/774;G06V10/762;G06V10/82;G06N3/04 |
代理公司: | 北京和信华成知识产权代理事务所(普通合伙) 11390 | 代理人: | 胡剑辉 |
地址: | 230031*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种新的高光谱图像数据半监督分类算法,该方法为,首先获取到所有的高光谱数据,并将其作为初始数据;其次使用稀疏子空间聚类作为聚类方法来聚合所有的初始数据,并获取所有初始数据的伪标签;其次在CNN1中对所有的初始数据及其伪标签进行预训练;对于CNN1中分类层中的目标函数,提出了基于度量学习的新的目标函数;之后利用CNN1除去最后的分类层,再加上全连接层构成了CNN2;之后将带标签的数据以及它们的已知真实标签对CNN2进行微调。本发明是通过利用伪标签进行高光谱图像分类的半监督深度学习机制;用两段式训练,扩展了训练信息;为了更好的掌握高光谱样本结构特征的问题,在预训练阶段提出了新的目标函数。 | ||
搜索关键词: | 一种 光谱 图像 数据 监督 分类 方法 | ||
【主权项】:
1.一种新的高光谱图像数据半监督分类算法,其特征在于,该方法包括下述步骤:步骤一:获取到所有的高光谱数据,并将其作为初始数据;步骤二:使用稀疏子空间聚类作为聚类方法来聚合所有的初始数据,并获取所有初始数据的伪标签;初始数据的伪标签是通过稀疏子空间聚类直接获得;步骤三:在CNN1中对所有的初始数据及其伪标签进行预训练;对于CNN1中分类层中的目标函数,提出了基于度量学习的新的目标函数;步骤四: 利用CNN1除去最后的分类层,再加上全连接层构成了CNN2;步骤五:将带标签的数据以及它们的标签在CNN2上进行微调;步骤六:在分类层之后,通过马尔可夫随机场,利用高光谱图像的空间信息,进一步对分类结果进行后处理,提高分类精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910113156.3/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置