[发明专利]基于图像增强与3D卷积神经网络的视频行为识别方法有效

专利信息
申请号: 201910134439.6 申请日: 2019-02-23
公开(公告)号: CN109829443B 公开(公告)日: 2020-08-14
发明(设计)人: 黄江平;袁德森;袁书伟;黄啸锐;刘婉莹 申请(专利权)人: 重庆邮电大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06N3/04
代理公司: 重庆辉腾律师事务所 50215 代理人: 卢胜斌
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于图像处理技术领域,具体涉及基于图像增强和3D卷积神经网络的视频行为识别方法,包括将输入的原始视频序列切分成帧,对各个帧图片进行预处理,并将其分别划分至训练集与测试集;将训练集图片输入行为区域增强网络进行训练,获得相应的掩码处理后图片;使用掩码处理后的图片序列训练3D卷积神经网络;输入测试集图片,获得该分支网络的测试集分类概率;将训练集图片输入3D卷积神经网络进行训练;输入测试集图片,得到该分支网络的测试集分类概率;将两分支网络的分类概率进行支持向量机模型训练,并得到最终的测试集检测结果。本发明能够准确并实时识别出视频中人物的行为,且更加充分的利用图像信息,提高视频中行为识别的准确率。
搜索关键词: 基于 图像 增强 卷积 神经网络 视频 行为 识别 方法
【主权项】:
1.基于图像增强和3D卷积神经网络的视频行为识别方法,其特征在于,包括以下步骤:S1:将输入的原始视频序列切分成帧,对各个帧图片进行预处理,并将其分别划分至训练集与测试集;S2:将训练集图片输入行为区域增强网络进行训练,获得相应的掩码处理后图片,从而得到人物行为信息增强的图像;S3:使用掩码处理后的图片序列训练3D卷积神经网络;输入测试集图片,获得该分支网络的测试集分类概率;S4:将训练集图片输入3D卷积神经网络进行训练;输入测试集图片,得到该分支网络的测试集分类概率;S5:将所得到的两分支网络的分类概率进行支持向量机模型训练,并得到最终的测试集检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910134439.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top