[发明专利]基于图像增强与3D卷积神经网络的视频行为识别方法有效
申请号: | 201910134439.6 | 申请日: | 2019-02-23 |
公开(公告)号: | CN109829443B | 公开(公告)日: | 2020-08-14 |
发明(设计)人: | 黄江平;袁德森;袁书伟;黄啸锐;刘婉莹 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62;G06N3/04 |
代理公司: | 重庆辉腾律师事务所 50215 | 代理人: | 卢胜斌 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像处理技术领域,具体涉及基于图像增强和3D卷积神经网络的视频行为识别方法,包括将输入的原始视频序列切分成帧,对各个帧图片进行预处理,并将其分别划分至训练集与测试集;将训练集图片输入行为区域增强网络进行训练,获得相应的掩码处理后图片;使用掩码处理后的图片序列训练3D卷积神经网络;输入测试集图片,获得该分支网络的测试集分类概率;将训练集图片输入3D卷积神经网络进行训练;输入测试集图片,得到该分支网络的测试集分类概率;将两分支网络的分类概率进行支持向量机模型训练,并得到最终的测试集检测结果。本发明能够准确并实时识别出视频中人物的行为,且更加充分的利用图像信息,提高视频中行为识别的准确率。 | ||
搜索关键词: | 基于 图像 增强 卷积 神经网络 视频 行为 识别 方法 | ||
【主权项】:
1.基于图像增强和3D卷积神经网络的视频行为识别方法,其特征在于,包括以下步骤:S1:将输入的原始视频序列切分成帧,对各个帧图片进行预处理,并将其分别划分至训练集与测试集;S2:将训练集图片输入行为区域增强网络进行训练,获得相应的掩码处理后图片,从而得到人物行为信息增强的图像;S3:使用掩码处理后的图片序列训练3D卷积神经网络;输入测试集图片,获得该分支网络的测试集分类概率;S4:将训练集图片输入3D卷积神经网络进行训练;输入测试集图片,得到该分支网络的测试集分类概率;S5:将所得到的两分支网络的分类概率进行支持向量机模型训练,并得到最终的测试集检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910134439.6/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序