[发明专利]基于多角度自注意力机制的图像-文本检索系统及方法在审
申请号: | 201910134902.7 | 申请日: | 2019-02-24 |
公开(公告)号: | CN109992686A | 公开(公告)日: | 2019-07-09 |
发明(设计)人: | 张玥杰;李文杰;张涛 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06F16/53 | 分类号: | G06F16/53;G06F16/535;G06F16/33;G06N3/04 |
代理公司: | 上海正旦专利代理有限公司 31200 | 代理人: | 陆飞;陆尤 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于跨模态检索技术领域,具体为基于多角度自注意力机制的图像‑文本检索系统及方法。系统包括:深度卷积网络,双向循环神经网络,图像、文本自注意力网络,多模态空间映射网络,以及多阶段训练模块;深度卷积网络用于获取图像区域特征在图像嵌入空间的嵌入向量,双向循环神经网络用于获取单词特征在文本空间的嵌入向量,两者分别输入至图像、文本自注意力网络;图像、文本自注意力网络用于获取图像关键区域的嵌入表示和句子中关键单词的嵌入表示;多模态空间映射网络用于获取图像文本在多模态空间的嵌入表示;多阶段训练模块用于学习网络中的参数。本发明在公共数据集Flickr30k和MSCOCO上取得良好结果,性能有很大提升。 | ||
搜索关键词: | 嵌入 图像 网络 文本 获取图像 多模态 文本检索系统 注意力 注意力机制 空间映射 神经网络 双向循环 训练模块 多阶段 卷积 向量 公共数据集 单词特征 关键区域 检索技术 嵌入空间 区域特征 模态 单词 句子 学习 | ||
【主权项】:
1.一种多角度自注意力机制的图像‑文本检索系统,其特征在于,包括:深度卷积网络,双向循环神经网络,图像自注意力网络,文本自注意力网络,多模态空间映射网络,及多阶段训练模块;所述深度卷积网络用于获取图像区域特征在图像嵌入空间的嵌入向量,并输入至图像自注意力网络;所述双向循环神经网络用于获取单词特征在文本空间的嵌入向量,并输入至文本自注意力网络;所述图像自注意力网络用于获取图像关键区域的嵌入表示;所述文本自注意力网络用于获取句子中关键单词的嵌入表示;所述多模态空间映射网络用于获取图像文本的在多模态空间的嵌入表示;所述多阶段训练模块用于学习网络中的参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910134902.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序