[发明专利]基于多目标检测3D CNN的人体行为识别方法及系统有效
申请号: | 201910136442.1 | 申请日: | 2019-02-18 |
公开(公告)号: | CN109977773B | 公开(公告)日: | 2021-01-19 |
发明(设计)人: | 董敏;李永发;毕盛;聂宏蓄 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多目标检测3D CNN的人体行为识别方法及系统,该方法包括:1)对视频进行预处理,将视频流转化为图像帧;2)采用目前比较成熟的SSD检测技术对视频中的目标对象进行标定裁剪;3)建立图像帧数据和标定裁剪数据的特征提取网络结构;4)建立特征融合模型,将步骤3)中提取的两种特征进行融合;5)利用Softmax回归模型分类器进行分类;6)根据实际的应用场景或公共数据集,对训练好的模型进行微调。本发明弥补目前深度神经网络模型在时间维度上卷积而造成信息丢失的一种情况,强化在时间维度上的特征的表达,整体提高模型的识别效率,使模型能够更好的理解人体的行为动作。 | ||
搜索关键词: | 基于 多目标 检测 cnn 人体 行为 识别 方法 系统 | ||
【主权项】:
1.基于多目标检测3D CNN的人体行为识别方法,其特征在于,包括以下步骤:1)对视频进行预处理,将视频流转化为图像帧;2)采用SSD检测技术对视频中的目标对象进行标定裁剪;3)建立图像帧数据和标定裁剪数据的特征提取网络结构;4)建立特征融合模型,将步骤3)中提取的两种特征进行融合;5)利用Softmax回归模型分类器进行分类;6)根据实际的应用场景或公共数据集,对训练好的模型进行微调,增强模型的泛化、推广能力。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910136442.1/,转载请声明来源钻瓜专利网。