[发明专利]基于深度学习的人脸三维特征点检测方法及系统有效
申请号: | 201910138641.6 | 申请日: | 2019-02-25 |
公开(公告)号: | CN109902616B | 公开(公告)日: | 2020-12-01 |
发明(设计)人: | 徐枫;王至博;杨东 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06T17/00;G06N3/08 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 张润 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的人脸三维特征点检测方法及系统,其中,该方法包括:建立人脸数据集,通过人脸三维重建对人脸数据集中的人脸图片进行处理获取人脸几何;在人脸模板上标定特定顶点为特征点,建立人脸图片与其对应的人脸三维特征点构成的数据集;训练输入为人脸图片,且输出为人脸三维特征点坐标的分布热度图的深度神经网络;训练时采用生成对抗网络以利用鉴别网络,输入为人脸图片和三维特征点分布热度图,输出真假值表示输入的人脸图片和三维特征点分布热度图是否配套,以通过训练后的神经网络得到检测结果。该方法可以检测图片中人脸特征点的三维坐标,且人脸边缘点与人脸模型之间具有很强的联系,使得人脸重建结果更为准确。 | ||
搜索关键词: | 基于 深度 学习 三维 特征 检测 方法 系统 | ||
【主权项】:
1.一种基于深度学习的人脸三维特征点检测方法,其特征在于,包括以下步骤:建立人脸数据集,通过人脸三维重建对所述人脸数据集中的人脸图片进行处理,以获取人脸几何;在人脸三维模板上标定特定顶点为特征点,建立人脸图片与其对应的人脸三维特征点构成的数据集;训练输入为人脸图片,且输出为人脸三维特征点坐标的分布热度图的深度神经网络;以及在训练时,采用生成对抗网络以利用鉴别网络,其中,输入为人脸图片和三维特征点分布热度图,输出为真或假表示输入的人脸图片和三维特征点分布热度图是否配套,以通过训练后的神经网络得到检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910138641.6/,转载请声明来源钻瓜专利网。