[发明专利]一种基于机器学习的频谱碎片避免方法在审
申请号: | 201910139551.9 | 申请日: | 2019-02-26 |
公开(公告)号: | CN109818803A | 公开(公告)日: | 2019-05-28 |
发明(设计)人: | 熊余;杨娅娅;叶玉龙;吴大鹏;王汝言 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | H04L12/24 | 分类号: | H04L12/24;H04Q11/00;G06N3/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 400065*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于机器学习的频谱碎片避免方法,本方法首先使用机器学习方法中的Elman神经网络预测业务的大小、到达时间及持续时间;然后,将时间和频谱资源抽象成二维资源池,并综合考虑业务的大小和业务持续时间,将每个业务等效为一个矩形块;最后,根据二维packing填充原则将业务矩形块填充至二维资源池,从而减小了网络中的频谱碎片。此外,将每条纤芯上的频谱资源划分为两个子区域,在相邻纤芯之间交替使用每个子区域中的资源,并根据每条纤芯上的业务量动态调整每个子区域的大小,从而降低纤芯之间串扰。本方法能够在降低芯间串扰的同时,降低网络中的频谱碎片,有效地提升了网络的资源利用率并降低了整体阻塞率。 | ||
搜索关键词: | 频谱 纤芯 二维资源 基于机器 频谱资源 矩形块 子区域 填充 神经网络预测 业务量动态 资源利用率 网络 交替使用 使用机器 芯间串扰 综合考虑 有效地 阻塞率 串扰 二维 减小 学习 抽象 | ||
【主权项】:
1.一种基于机器学习的频谱碎片避免方法,其特征在于:在该方法中,利用机器学习方法中的Elman神经网络预测业务的大小、到达时间及持续时间;将时间和频谱资源抽象成二维资源池,并综合考虑业务的大小和业务持续时间,将每个业务等效为一个矩形块;最后,根据二维packing填充原则将业务矩形块填充至二维资源池,从而减小了网络中的频谱碎片。此外,将每条纤芯上的频谱资源划分为两个子区域,在相邻纤芯之间交替使用每个子区域中的资源,并根据每条纤芯上的业务量动态调整每个子区域的大小,从而降低纤芯之间串扰。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910139551.9/,转载请声明来源钻瓜专利网。
- 上一篇:智能变电站二次设备仿真系统
- 下一篇:一种网络监测方法及装置