[发明专利]用于信息系统入侵检测的在线单分类主动机器学习方法有效
申请号: | 201910142435.2 | 申请日: | 2019-02-26 |
公开(公告)号: | CN109995756B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 李光夏;刘佳;沈玉龙;党永超 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | H04L9/40 | 分类号: | H04L9/40;G06K9/62 |
代理公司: | 西安长和专利代理有限公司 61227 | 代理人: | 黄伟洪 |
地址: | 710071 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于机器学习技术领域,公开了一种用于信息系统入侵检测的在线单分类主动机器学习方法;包括:使用信息系统中较易获得且数量最多的一类数据对分类器进行初始化,得到初始分类器模型;对于信息系统中实时数据,根据所得初始分类器模型,对实时数据的类型根据一定策略给出预测,同时,若满足某种条件,请求专家给出专业判定,并对分类器模型做出更新。本发明使用在线单分类主动机器学习方法检测信息系统中的网络入侵行为;使用单分类算法学习正常数据的特征并以此判定数据类型;选出分类器所给出的预测结果中最值得被专家分析的数据,由专家判定并针对性地更新分类器,更好地利用专家资源提升分类器性能,实现对信息系统入侵行为的有效识别。 | ||
搜索关键词: | 用于 信息系统 入侵 检测 在线 分类 主动 机器 学习方法 | ||
【主权项】:
1.一种用于信息系统入侵检测的在线单分类主动机器学习方法,其特征在于,所述用于信息系统入侵检测的在线单分类主动机器学习方法包括:第一步,使用信息系统中较易获得且数量最多的一类数据对分类器进行初始化;第二步,对于信息系统中实时数据,根据所得初始分类器模型,对实时数据的属性类型根据一定策略给出预测,同时,若满足某种条件,请求专家给出专业判定,并对分类器模型做出更新;第三步,更新分类器模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910142435.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于小程序架构的登录状态的控制方法及装置
- 下一篇:访问控制系统