[发明专利]基于像素多尺度预测的可逆数据隐藏方法有效
申请号: | 201910155201.1 | 申请日: | 2019-03-01 |
公开(公告)号: | CN109948307B | 公开(公告)日: | 2021-01-05 |
发明(设计)人: | 赵耀;李晓龙;吴昊锐 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06F21/10 | 分类号: | G06F21/10;H04N1/32 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 孙洪波 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于像素多尺度预测的可逆数据隐藏方法,包括:计算载体图像上每一个像素在所在区域的邻域复杂度,根据像素的邻域复杂度对所有的像素进行分类;对分类后的一定范围邻域复杂度的像素集合进行多尺度预测得到预测值,进而得到预测误差值和对应的预测误差直方图;利用直方图拓展‑平移嵌入算法,对预测误差直方图的峰值处的预测误差对应的像素值进行拓展和平移,将隐秘数据嵌入到像素值的预测误差上,进而得到嵌入隐秘数据的图像;将辅助信息通过LSB隐写算法嵌入到嵌入隐秘数据的图像中,得到含有隐秘数据的加密图像。本方法在保证一定嵌入容量的情况下,通过充分利用像素之间的信息冗余,有效降低载体图像的嵌入失真。 | ||
搜索关键词: | 基于 像素 尺度 预测 可逆 数据 隐藏 方法 | ||
【主权项】:
1.一种基于像素多尺度预测的可逆数据隐藏方法,其特征在于,包括:计算载体图像上每一个像素在所在区域的邻域复杂度,根据像素的邻域复杂度对所有的像素进行分类;对分类后的一定范围邻域复杂度的像素集合进行多尺度预测得到预测值,进而得到预测误差值和对应的预测误差直方图;利用直方图拓展‑平移嵌入算法,对所述预测误差直方图的峰值处的预测误差对应的像素值进行拓展和平移的修改操作,将隐秘数据嵌入到像素值的预测误差上,进而得到嵌入隐秘数据的图像;将辅助信息通过最低有效位LSB隐写算法嵌入到嵌入隐秘数据的图像中,得到含有隐秘数据的加密图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910155201.1/,转载请声明来源钻瓜专利网。