[发明专利]一种融合GAN和迁移学习的电商评价情感分析方法有效
申请号: | 201910159199.5 | 申请日: | 2019-03-04 |
公开(公告)号: | CN110008338B | 公开(公告)日: | 2021-01-19 |
发明(设计)人: | 陶乾;黄浩建;王振宇;蒋道宁;陶哲瀚 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06K9/62;G06N3/04;G06N3/08;G06Q30/06 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种融合GAN和迁移学习的电商评价情感分析方法,该方法基于GAN构建迁移学习框架,通过标注的源领域文本数据和少量标注的目标领域文本数据训练生成模型和鉴别模型,生成模型生成数据训练分类器用于特定的分类任务来实现源领域到目标领域的迁移。本发明在进行特定的电子商务评价情感分析任务时,减少了模型训练的数据收集处理工作,用户只需使用标注的源领域文本数据和少量标注的目标领域文本数据训练即可,而不需要进行大量目标领域文本数据的标注工作。本发明提出的方法使迁移架构和任务结构分离,对传统的迁移学习方法进行了突破,可实现跨领域迁移学习和异构迁移学习,提升数据分析的智能化水平。 | ||
搜索关键词: | 一种 融合 gan 迁移 学习 评价 情感 分析 方法 | ||
【主权项】:
1.一种融合GAN和迁移学习的电商评价情感分析方法,其特征在于,所述的分析方法包括以下步骤:S1、数据预处理,将源领域文本数据和目标领域文本数据合成为一份语料训练word2vec模型,训练后通过词索引字典将两个领域的文本数据进行序列化处理转换为数字表示;S2、构建基于GAN的迁移学习框架,其中,基于GAN的迁移学习框架包括生成模型、鉴别模型、分类器模型;S3、训练基于GAN的迁移学习框架中的生成模型和鉴别模型,其中,随机噪声和源领域有标注的文本数据作为生成模型的输入,生成模型生成的文本数据和目标领域少量有标注的文本数据作为鉴别模型的输入,在对抗训练过程中,生成模型基于每个词进行蒙特卡洛树搜索,得到一批完整序列,鉴别模型对这批完整序列进行鉴别,并反馈给生成模型,得到反馈后,生成模型通过策略梯度的方式进行训练,同时,鉴别模型使用对数损失函数进行训练,对抗训练完成后,生成模型生成使源领域和目标领域的数据特征分布处于同一分布的文本数据,实现源领域到目标领域的迁移;S4、所述的生成模型生成数据,并结合少量标注的目标领域文本数据,训练基于GAN的迁移学习框架中的分类器模型,所述的分类器模型对特定的分类任务实现源领域到目标领域的迁移;S5、根据特定的任务对目标领域文本数据进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910159199.5/,转载请声明来源钻瓜专利网。