[发明专利]一种高密度柔性基板的缺陷检测方法有效
申请号: | 201910166760.2 | 申请日: | 2019-03-06 |
公开(公告)号: | CN109859207B | 公开(公告)日: | 2023-06-23 |
发明(设计)人: | 罗家祥;吴冬冬;林宗沛;胡跃明 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/0464;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 王东东 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种高密度柔性基板的缺陷检测方法,包括采集带有外观缺陷的FICS图像,将图像预处理后统一为标准尺寸,标记每张图像中的缺陷位置和类别,作为faster R‑CNN卷积神经网络模型的训练样本;将标记号的训练样本作为faster R‑CNN卷积神经网络模型的输入,并输出FICS缺陷的位置与类型信息,得到训练好的基于faster R‑CNN卷积神经网络模型;然后将待检测的FICS图像输入训练好的基于faster R‑CNN卷积神经网络模型,输出是否有缺陷,如果有缺陷,则输出缺陷位置及类型。本发明实现高密度柔性基板外观缺陷的快速定位与类型判断,解决了传统缺陷检测方法速度慢,正确率低的问题。 | ||
搜索关键词: | 一种 高密度 柔性 缺陷 检测 方法 | ||
【主权项】:
1.一种高密度柔性基板的缺陷检测方法,其特征在于,包括:深度神经网络模型训练步骤,具体为:采集带有外观缺陷的FICS图像,将图像预处理后统一为标准尺寸,标记每张图像中的缺陷位置和类别,作为faster R‑CNN卷积神经网络模型的训练样本;将标记号的训练样本作为faster R‑CNN卷积神经网络模型的输入,并输出FICS缺陷的位置与类型信息,得到训练好的基于faster R‑CNN卷积神经网络模型;缺陷检测步骤,具体为:将待检测的FICS图像输入训练好的基于faster R‑CNN卷积神经网络模型,输出是否有缺陷,如果有缺陷,则输出缺陷位置及类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910166760.2/,转载请声明来源钻瓜专利网。