[发明专利]一种交通车辆与行人的自动识别方法在审
申请号: | 201910173764.3 | 申请日: | 2019-03-08 |
公开(公告)号: | CN110069982A | 公开(公告)日: | 2019-07-30 |
发明(设计)人: | 刘军;高亮;后士浩 | 申请(专利权)人: | 江苏大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种交通车辆与行人的自动识别方法,包括如下步骤:数据集的制作;构建增强卷积神经网络Enhancement‑tiny YOLOv3;通过输入所述数据集,对增强卷积神经网络Enhancement‑tiny YOLOv3训练,当Enhancement‑tiny YOLOv3网络的平均损失小于预设阈值时,得到训练好的Enhancement‑tiny YOLOv3的网络;自动识别目标。所述数据集的制作具体为:对目标分类;自行采集目标的图片数据集。所述目标为行人和车俩;每个类别的目标采集白天图片和夜晚图片并进行手工标注。本发明可以检测平均准确率显著提高,平均误检率较大减少,平均漏检率大幅降低,在保证实时性的前提下,有效降低了视频流目标检测的误检和漏检。 | ||
搜索关键词: | 自动识别 数据集 卷积神经网络 交通车辆 采集目标 目标分类 目标检测 图片数据 漏检率 实时性 视频流 误检率 阈值时 准确率 构建 漏检 误检 预设 制作 标注 网络 采集 检测 图片 保证 | ||
【主权项】:
1.一种交通车辆与行人的自动识别方法,其特征在于,包括如下步骤:数据集的制作;构建增强卷积神经网络Enhancement‑tiny YOLOv3;通过输入所述数据集,对增强卷积神经网络Enhancement‑tiny YOLOv3训练,当Enhancement‑tiny YOLOv3网络的平均损失小于预设阈值时,得到训练好的Enhancement‑tiny YOLOv3的网络;自动识别目标。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910173764.3/,转载请声明来源钻瓜专利网。