[发明专利]一种用于茶叶外形品质检测的高光谱特征波段优化方法有效
申请号: | 201910189390.4 | 申请日: | 2019-03-13 |
公开(公告)号: | CN110047062B | 公开(公告)日: | 2023-06-13 |
发明(设计)人: | 江辉;许唯栋;陈全胜 | 申请(专利权)人: | 江苏大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G01N21/25 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于茶叶外形品质检测的高光谱特征波段优化方法,属于农业农产品无损检测与控制领域。该方法主要分为两个阶段,第一阶段是获取可见/近红外光谱数据,通过设计的FWCA算法筛选光谱特征波段,初步压缩高光谱图像数据;第二阶段是对初步压缩压缩后的高光谱图像数据进行PCA,进一步精细优化高光谱特征波段。本发明解决了常规高光谱图像分析数据量大、共线性信息多、计算成本高等问题;具有提升数据压缩率、减少CPU处理时间及保证特征波段选择的稳定性等有益效果。 | ||
搜索关键词: | 一种 用于 茶叶 外形 品质 检测 光谱 特征 波段 优化 方法 | ||
【主权项】:
1.一种用于茶叶外形品质检测的高光谱特征波段优化方法,其特征在于,包括以下步骤:步骤1、从茶叶高光谱图像中截取一定像素图像作为感兴趣区域,从感兴趣区域一定像素内提取可见/近红外平均光谱,并利用离散小波变换对提取的可见/近红外光谱进行预处理,以消除噪声信息;步骤2、设计特征波段组合分析FWCA算法筛选可见/近红外光谱的特征波段,再提取优选特征波段下的高光谱图像,实现高光谱图像数据的初步压缩;步骤3、对初步压缩后的高光谱图像数据进行主成分分析PCA,并根据PCA统计结果确定最终高光谱特征波段。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910189390.4/,转载请声明来源钻瓜专利网。