[发明专利]一种基于深度学习的视频中车辆细粒度分类方法有效
申请号: | 201910193164.3 | 申请日: | 2019-03-14 |
公开(公告)号: | CN109948610B | 公开(公告)日: | 2022-11-18 |
发明(设计)人: | 徐万泽;罗建桥;李柏林;程洋;黄翰鹏 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G06V20/62 | 分类号: | G06V20/62;G06V10/764 |
代理公司: | 成都信博专利代理有限责任公司 51200 | 代理人: | 刘凯 |
地址: | 610031 四川省成都市*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于深度学习的视频中车辆细粒度分类方法,将车辆外观特征分为不同的显著性等级;将图像分割为相同大小的子图像块,建立卷积神经网络将切割后的子图像块分类;通过提取特征向量的基础网络提取特征图,得到特征向量,并连接到对应分类类别数目的全连接层;将每一张子图的一级特征向量加权平均,得到二级特征向量;将二级特征向量采用加权投票机制得到三级特征向量;建立品牌分类器,每个品牌下建立型号分类器,每个型号下建立年份分类器;将车辆按照品牌‑车型‑年份进行逐层检测得到最终的车型分类结果。本发明将复杂的车牌定位问题简化为一个分类问题,将一个多分类问题分解成几个小分类问题的组合,大大减小网络的分类难度。 | ||
搜索关键词: | 一种 基于 深度 学习 视频 车辆 细粒度 分类 方法 | ||
【主权项】:
1.一种基于深度学习的视频中车辆细粒度分类方法,其特征在于,包括以下步骤:步骤一:将车辆外观特征分为不同的显著性等级:背景为一级显著性部分,车头为三级显著性部分,车辆其他部分为二级显著性部分;步骤二:将待检测车辆图像分割为相同大小的子图像块,建立卷积神经网络,按上述显著性等级将切割后的子图像块分为:一级显著性子图、二级显著性子图和三级显著性子图;步骤三:每一张子图通过提取特向量的基础卷积神经网络,提取n个特征图,然后得到1*n维的特征向量,并连接到对应分类类别数目N的全连接层,得到一个1*N维的一级特征向量;步骤四:设计一个由多个弱分类器结合成的强分类器:将每一张子图的一级特征向量进行加权平均,得到一个综合的二级特征向量;将来自不同显著性等级的二级特征向量采用加权投票机制综合得到最后的一个三级特征向量;步骤五:建立品牌分类器,每个品牌下建立型号分类器,每个型号下建立年份分类器;将车辆按照品牌‑车型‑年份进行逐层检测得到最终的车型分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910193164.3/,转载请声明来源钻瓜专利网。