[发明专利]一种混合机器学习模型的滑坡位移预测方法有效
申请号: | 201910194398.X | 申请日: | 2019-03-14 |
公开(公告)号: | CN109992847B | 公开(公告)日: | 2022-08-05 |
发明(设计)人: | 关善文;邓洪高;周李;纪元法;罗笑南 | 申请(专利权)人: | 桂林电子科技大学;桂林笑微酒店管理有限公司 |
主分类号: | G06F30/20 | 分类号: | G06F30/20 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 杨雪梅 |
地址: | 541004 广*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种混合机器学习模型的滑坡位移预测方法,对滑坡监测点进行滑坡影响因素挖掘和滑坡位移数据采集和预处理并作为模型的训练数据;将获得的滑坡影响因素和滑坡位移数据看作时间序列进行小波去燥处理;基于时间序列原理,采用霍德里克‑普雷斯科特滤波器(HP)将去燥后的滑坡影响因素和位移数据分解成趋势项和周期项。针对趋势项和周期项分别采用二阶指数平滑(DBS)的方法和动态多群粒子群(DMS‑PSO)优化极限学习机(ELM)模型进行位移预测。最后将预测的周期项位移和趋势项位移相加得到总的滑坡预测位移。通过该周期项位移预测模型可以更好的求解全局最优解,使预测精度和可靠性更高。 | ||
搜索关键词: | 一种 混合 机器 学习 模型 滑坡 位移 预测 方法 | ||
【主权项】:
1.一种混合机器学习模型的滑坡位移预测方法,其特征在于,包括如下步骤:S1、从滑坡山体位移监测点和影响因素传感器获取N组滑坡位移数据,并对N组滑坡位移数据进行预处理;S2、将预处理后的N组滑坡位移数据分解为N组趋势项和N组周期项,N组趋势项包括N组影响因素趋势项和N组位移趋势项,N组周期项包括N组影响因素周期项和N组位移周期项;S3、用前M组位移趋势项构建滑坡趋势项位移预测模型,并作为训练集,训练趋势项位移预测模型,得到趋势位移量,并将趋势位移量输出;其中M+L=N;S4、用前M组影响因素周期项和前M组位移周期项构建滑坡周期项位移预测模型,并作为训练集,训练周期项位移预测模型;将后L组影响因素周期项输入训练好的周期项位移预测模型中,得到周期位移量,并将周期位移量输出;S5、将步骤S3得到的趋势位移量和步骤S4得到的周期位移量相加整合,得到总滑坡位移预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学;桂林笑微酒店管理有限公司,未经桂林电子科技大学;桂林笑微酒店管理有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910194398.X/,转载请声明来源钻瓜专利网。