[发明专利]基于变分推断的逐层神经网络剪枝方法和系统在审

专利信息
申请号: 201910195272.4 申请日: 2019-03-14
公开(公告)号: CN110020718A 公开(公告)日: 2019-07-16
发明(设计)人: 王延峰;周越夫;张娅 申请(专利权)人: 上海交通大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 上海恒慧知识产权代理事务所(特殊普通合伙) 31317 代理人: 徐红银
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于变分推断的逐层神经网络剪枝方法和系统,该方法包括:通过采样方式在神经网络中注噪声,得到噪化的神经网络;根据预设的目标函数对噪化的神经网络的权重进行训练,得到训练后的神经网络权重和训练后的神经网络;根据变分推断得到的变分下界,训练注入的乘性高斯噪声对应的噪声参数,得到训练后的噪声参数;基于所述训练后的噪声参数、训练后的神经网络权重,通过阈值函数逐层删除所述训练后的神经网络中相应的神经元或者卷积核。本发明的方法中,所注入的噪声在训练过程中融入了神经网络的层级关系,使得在剪枝过程中充分考虑层间的依赖,继而保证了在高度剪枝下神经网络的输出结果依旧具备鲁棒性。
搜索关键词: 神经网络 剪枝 噪声参数 推断 权重 噪声 神经元 采样方式 层级关系 高斯噪声 目标函数 输出结果 训练过程 阈值函数 卷积核 鲁棒性 权重和 层间 乘性 下界 预设 删除 融入 保证
【主权项】:
1.一种基于变分推断的逐层神经网络剪枝方法,其特征在于,包括:通过采样方式在神经网络中注噪声,得到噪化的神经网络;根据预设的目标函数对噪化的神经网络的权重进行训练,得到训练后的神经网络权重和训练后的神经网络;根据变分推断得到的变分下界,训练注入的乘性高斯噪声对应的噪声参数,得到训练后的噪声参数;基于所述训练后的噪声参数、训练后的神经网络权重,通过阈值函数逐层删除所述训练后的神经网络中相应的神经元或者卷积核。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910195272.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top