[发明专利]锈斑识别方法及装置在审

专利信息
申请号: 201910204366.3 申请日: 2019-03-18
公开(公告)号: CN110111299A 公开(公告)日: 2019-08-09
发明(设计)人: 周晨轶;张文杰;汤亿则;梅峰;王文;冯宇;徐亦白;卢杉;冯烛明;林晓亮 申请(专利权)人: 国网浙江省电力有限公司信息通信分公司
主分类号: G06T7/00 分类号: G06T7/00;G06K9/62
代理公司: 杭州华鼎知识产权代理事务所(普通合伙) 33217 代理人: 魏亮
地址: 310007*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种锈斑识别方法及装置。该方法包括:获取目标图像;将所述目标图像进行预处理,生成上采样图片与下采样图片;将所述上采样图片与所述下采样图片输入锈斑识别模型中,获取特征图;对所述特征图进行细粒度特征识别,确定识别结果;以及根据所述识别结果确定所述目标图像中是否存在锈斑;其中,所述锈斑识别模型通过具有ResNet50网络结构的卷积神经网络模型训练获得。本公开涉及的锈斑识别方法及装置,能够准确、快捷地判断设备上的锈斑,保证配电网系统安全运转。
搜索关键词: 锈斑 目标图像 上采样 特征图 下采样 卷积神经网络 预处理 配电网系统 获取目标 结果确定 模型训练 判断设备 特征识别 图片输入 网络结构 细粒度 图片 图像 运转 安全 保证
【主权项】:
1.一种锈斑识别方法,其特征在于,包括:获取目标图像;将所述目标图像进行预处理,生成上采样图片与下采样图片;将所述上采样图片与所述下采样图片输入锈斑识别模型中,获取特征图;对所述特征图进行细粒度特征识别,确定识别结果;以及根据所述识别结果确定所述目标图像中是否存在锈斑;其中,所述锈斑识别模型通过具有ResNet50网络结构的卷积神经网络模型训练获得。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网浙江省电力有限公司信息通信分公司,未经国网浙江省电力有限公司信息通信分公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910204366.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top