[发明专利]基于兴趣区域重检测的宽幅光学遥感目标检测方法有效

专利信息
申请号: 201910211183.4 申请日: 2019-03-20
公开(公告)号: CN110009010B 公开(公告)日: 2023-03-24
发明(设计)人: 杨淑媛;胡滔;冯志玺;王敏;刘志;徐光颖;王俊骁;孟会晓;郝晓阳 申请(专利权)人: 西安电子科技大学
主分类号: G06V20/13 分类号: G06V20/13;G06V10/26;G06V10/40;G06V10/774;G06V10/80;G06V10/82;G06N3/0464;G06N3/084
代理公司: 陕西电子工业专利中心 61205 代理人: 程晓霞;王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于兴趣区域重检测的宽幅光学遥感目标检测方法,主要解决宽幅光学遥感目标检测中对小尺度目标检测精度低及重叠滑窗检测时效性慢的问题。具体步骤有:制作多尺度训练样本;设计检测网络模型结构;对混合重检测网络模型进行训练;宽幅影像候选兴趣区域提取与重检测。本发明设计的检测网络模型,能拟合不同尺度目标的检测;基于兴趣区域检测不需重叠检测,降低了宽幅遥感图像候选区域提取的时间,采用对候选区域基于目标的尺度先验性进行重检测,改善了小目标的检测效果,检测精度更高。可应用于任何宽幅像素分辨率大小的光学遥感图像的检测。
搜索关键词: 基于 兴趣 区域 检测 宽幅 光学 遥感 目标 方法
【主权项】:
1.一种基于兴趣区域重检测的宽幅光学遥感目标检测方法,包括有以下步骤:(1)制作多尺度训练样本:输入宽幅光学遥感大图,将宽幅遥感图像切块分割成多尺度小图,制作成检测网络模型训练样本;(2)构造混合重检测网络模型:检测网络模型主要包括特征提取网络、反卷积模块、侧连接融合模块和预测网络结构四部分;(2a)通过基于ImageNet预训练模型ResNet‑50进行多尺度小图特征提取;(2b)在特征提取层后面加入反卷积层,提取分辨率高的、语义信息丰富的特征;(2c)将浅层特征与深层特征通过侧连接模块进行特征拼接融合,得到融合特征;(2d)将检测网络模型设置多个不同尺度的融合特征进行预测;(2e)对多个不同尺度特征每个位置点设定其预测锚框anchors的数量、尺度和比例;(2f)对多个不同尺度特征分别加入位置回归金字塔网络和分类金字塔预测网络;(3)对混合重检测网络模型进行训练:反卷积模块、侧连接融合模块和预测网络参数随机初始化,采用反向传播算法进行重检测网络模型参数反复迭代更新;重检测网络模型训练到最大迭代次数,模型更新结束,得到训练好的重检测网络模型;(4)宽幅影像候选兴趣区域提取与重检测:通过训练好的重检测网络模型对输入宽幅光学遥感大图先进行滑窗候选兴趣区域提取,不重叠检测,再对候选兴趣区域通过重检测模型进行重检测,得到重检测后的整张光学遥感大图的检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910211183.4/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top