[发明专利]一种钢筋智能识别与计数方法及系统有效
申请号: | 201910238203.7 | 申请日: | 2019-03-27 |
公开(公告)号: | CN110032954B | 公开(公告)日: | 2021-05-14 |
发明(设计)人: | 不公告发明人 | 申请(专利权)人: | 中建三局第一建设工程有限责任公司;四川轻化工大学;成都数之联科技有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 熊曦 |
地址: | 430000 湖北省武*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种钢筋智能识别与计数方法及系统,包括:采集具有钢筋簇截面图像的图片数据集,并基于采集的图片数据集获得训练样本集;建立深度卷积神经网络模型,基于训练样本集数据对深度卷积神经网络模型进行训练;将待识别图片输入训练后的深度卷积神经网络模型,获得深度卷积神经网络模型的初步输出结果;利用非极大值抑制算法对初步输出结果的得分图进行处理,把每一个区域的得分转化为一个点,并利用离群点删除算法剔除初步输出结果中识别错误的钢筋,获得深度卷积神经网络模型的最终输出结果;基于深度卷积神经网络模型的最终输出结果,获得待识别图片中钢筋的数目和位置,本方法能够高效准确地智能识别钢筋和对钢筋计数。 | ||
搜索关键词: | 一种 钢筋 智能 识别 计数 方法 系统 | ||
【主权项】:
1.一种钢筋智能识别与计数方法,其特征在于,所述方法包括:采集具有钢筋簇截面图像的图片数据集,并基于采集的图片数据集获得训练样本集;建立深度卷积神经网络模型,基于训练样本集数据对深度卷积神经网络模型进行训练;将待识别图片输入训练后的深度卷积神经网络模型,获得深度卷积神经网络模型的输出作为初步结果;利用非极大值抑制算法对输出的初步结果的得分图进行处理,把每一个区域的得分转化为一个点,并利用离群点删除算法剔除初步结果中识别错误的钢筋,获得深度卷积神经网络模型的最终输出结果;基于深度卷积神经网络模型的最终输出结果,获得待识别图片中钢筋的数目和位置信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中建三局第一建设工程有限责任公司;四川轻化工大学;成都数之联科技有限公司,未经中建三局第一建设工程有限责任公司;四川轻化工大学;成都数之联科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910238203.7/,转载请声明来源钻瓜专利网。