[发明专利]一种基于高精度哈希图像检索技术的行人检测方法及系统在审
申请号: | 201910247002.3 | 申请日: | 2019-03-29 |
公开(公告)号: | CN109948585A | 公开(公告)日: | 2019-06-28 |
发明(设计)人: | 焦宏哲;魏斯玮;傅稼润;王春枝;严灵毓;叶志伟 | 申请(专利权)人: | 湖北工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06F16/51 |
代理公司: | 北京金智普华知识产权代理有限公司 11401 | 代理人: | 杨采良 |
地址: | 430068 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像检索技术领域,公开了一种基于高精度哈希图像检索技术的行人检测方法及系统,对于提取的行人图像采用机器学习创建目标函数,进行目标最小化,得到临阶相似矩阵,再采用ILS算法进一步最小化目标函数,得到精确的哈希码;得到精确的哈希码后,采用端到端哈希深度学习方法学习哈希函数,并根据人工神经网络ANN的隐藏层中不同节点的不同权重对输入进行调整;在CNNs后,选择单隐藏层MLP学习hash标签;最后生成的训练函数本发明减少了识别误差与语义损失,提高了对象搜索的准确性和全面性;利用高精度的哈希图像检索算法提高了识别准确率以及识别速率。 | ||
搜索关键词: | 哈希 图像检索技术 目标函数 行人检测 哈希码 隐藏层 最小化 算法 人工神经网络ANN 语义 对象搜索 哈希函数 机器学习 图像检索 相似矩阵 训练函数 端到端 全面性 准确率 权重 学习 标签 图像 创建 | ||
【主权项】:
1.一种基于高精度哈希图像检索技术的行人检测方法,其特征在于,所述基于高精度哈希图像检索技术的行人检测方法包括:对于提取的行人图像采用机器学习创建目标函数,进行目标最小化,得到临阶相似矩阵,再采用ILS算法进一步最小化目标函数,得到精确的哈希码;得到精确的哈希码后,采用端到端哈希深度学习方法学习哈希函数,根据人工神经网络ANN的隐藏层中不同节点的不同权重对输入进行调整;并进行CNNs后,选择单隐藏层MLP学习hash标签;最后生成训练函数:表示输出为一个mxd矩阵,m是批量的样本数量,d是最后一个全连接层的输出数量,x是输出向量,y是对应的标签。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖北工业大学,未经湖北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910247002.3/,转载请声明来源钻瓜专利网。