[发明专利]一种基于图像金字塔的X射线图像增强方法有效

专利信息
申请号: 201910247876.9 申请日: 2019-03-29
公开(公告)号: CN110021031B 公开(公告)日: 2023-03-10
发明(设计)人: 张海平;范美仁;陈松林 申请(专利权)人: 中广核贝谷科技有限公司
主分类号: G06T7/136 分类号: G06T7/136;G06T5/00;G06T7/194
代理公司: 江西省专利事务所 36100 代理人: 胡里程
地址: 330096 *** 国省代码: 江西;36
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于图像金字塔的X射线图像增强方法,该方法主要包括图像分割,高斯金字塔和拉普拉斯金字塔构建,图像细节增强,图像重构融合,背景还原等步骤。本发明的优点在于:在保证X射线图像背景不变的前提下,针对图像灰度值差异很小的黑色区域,可显著提高其对比度,使图像内部物体的轮廓清晰可见。
搜索关键词: 一种 基于 图像 金字塔 射线 增强 方法
【主权项】:
1.一种基于图像金字塔的X射线图像增强方法,其步骤:1.图像分割:在X射线图像中,待扫描的物体成像后称为目标,目标物体之外的区域称为背景;由于背景中X射线没有被任何物体吸收,所以其像素的灰度值较大,表现为白色区域;目标图像分割是将背景区域的像素值置为0,而目标物体像素值保持不变;背景图像分割是保持背景区域的像素值不变,将目标物体像素值置为0;本方法后续的图像增强处理只针对目标图像进行;步骤1.1:设定分割阈值thrthr=c*Max,其中系数c的取值范围为c∈[0.85,0.95],Max为原始图像src的最大值;步骤1.2:新建一个和原始图像尺寸、数据类型一致的标记图像flag,图像内所有像素值的所有数据位都置为1;步骤1.3:根据阈值thr,生成最终的标记图flag,设标记图像flag每个像素的值为flag(x,y),设原始图像src每个像素的值为src(x,y),其运算公式如下:步骤1.4:根据步骤1.3获得的flag,获得目标图像dst和背景图像bak,目标图像dst采用公式获得:背景图像bak采用公式获得:2.图像金字塔构建:图像金字塔构建是通过下采样方式把目标图像dst分解成不同分辨率的一组图像序列,分辨率最大的图像位于底层,称为金字塔塔底,分辨率最小的图像位于顶层,称为金字塔尖,金字塔从下至上,图像尺寸逐级递减,下层图像宽和高是上层图像宽、高的2倍,即面积是上层图像的4倍,目标图像dst的金字塔构建最终获得高斯金字塔和拉普拉斯金子塔;步骤2.1:对目标图像dst做归一化处理,将dst的12位或16位的整数数据归一化到取值范围为[0,1.0]的浮点型数据,这样便于后续增强处理的数学运算,归一化处理公式如下:dst(x,y)=(dst(x,y)‑Minval)/(Maxval‑Minval)公式中Maxval和Minval分别为归一化前目标图像dst中像素灰度最大值和最小值;步骤2.2:计算目标图像dst可构建金字塔的最大层数Lev_Max,设塔尖层图像的尺寸≥2×2,则计算公式如下:Lev_Max=[ln(min(width,height))/ln2]公式中min(width,height)为取目标图像dst宽、高中的较小值;步骤2.3:构建高斯金子塔:高斯金字塔是通过高斯模糊和下采样获得一系列呈金字塔形状排列的图像,将步骤2.1中归一化后的目标图像dst做为高斯金字塔第0层(塔底),假设第i(i=0,1,…,Lev_Max‑1)层图像通过高斯模糊、下采样处理,可获得i+1层图像,具体构建步骤如下:2.3.1.使用5×5高斯模板对i层图像进行高斯内核卷积;2.3.2.下采样:将卷积后图像的所有偶数行和列去除,得到i+1层图像,i+1层图像是i层图像的1/4,对以上步骤进行Lev_Max次迭代,就可得到图像的整个高斯金字塔,设为Gi(i=0,1,2Λ,Lev_Max);步骤2.4:构建拉普拉斯金子塔:拉普拉斯金子塔是在高斯金字塔的基础上对每层图像(第0层除外)进行上采样,然后再和其下层图像相减而得到的一系列呈金字塔形状排列的图像,设拉普拉斯金子塔为Li,其构建的数学公式如下:Li=Gi‑Up(G(i+1))公式中Up(G(i+1))为上采样处理,即图像的宽和高都增加至原图像的2倍,对上采样图像的空白像素点使用双线性插值法进行填充,上采样处理后的图像面积为原图像的4倍,最终得到拉普拉斯金字塔Li(i=0,1,2Λ,Lev_Max‑1),可见高斯金字塔比拉普拉斯金字塔多了塔尖层图像,拉普拉斯金字塔实际得到的是图像在不同尺度(分辨率)下的一系列细节图像,即目标物体的轮廓细节,图像像素的取值范围为[‑1,1];3.图像细节增强:图像细节增强是针对拉普拉斯金字塔的每层图像进行数学运算,提高其对比度,使其轮廓细节更突出,本方法使用幂函数进行图像增强,设金子塔第i层图像每个像素值用Li(x,y)表示,则增强的数学公式如下:由于拉普拉斯金字塔靠近塔尖的图像尺寸较小,其轮廓细节也非常有限,大量的轮廓细节集中在拉普拉斯金字塔最下面3层,故公式中的系数p可按下面公式取值:在拉普拉斯金字塔最下面3层图像(i=0,1,2)中p的取值范围为p∈[4,10],值越大,增强效果越明显,公式中a的取值范围为a∈(0,1),a值越小增强的效果越明显;4.图像重构融合图像重构融合为高斯金子塔和拉普拉斯金字塔分解的逆过程,首先将高斯金字塔塔尖层图像GLev_Max移到拉普拉斯金字塔的塔尖,然后整个图像的重构只针对拉普拉斯金字塔进行;步骤4.1:图像重构:从塔尖层图像开始,具体重构步骤如下:4.1.1.对上层图像Li采用双线性插值法进行上采样,这样图像尺寸就和下层图像Li+1保持一致;4.1.2.将Li和Li+1相加,将相加的结果替换原来的Li+1,即Li+1=Li+Li+1,将i增1,然后再重新执行第1步;对以上步骤进行Lev_Max次迭代,最终可得到和原始图像尺寸一致的增强图像L0;步骤4.2:由于增强后的图像L0数据类型为浮点型,需将其转换为原来的12位或16位整数类型,设转换后的图像为E,其像素取值范围为E(x,y)∈[0,Emax],转换公式如下:E(x,y)=INT(Emax*(L0(x,y)‑Lmin)/(Lmax‑Lmin))公式中INT()为取整操作,Emax为转换后的12位或16位图像的最大像素值,如果为16位,则Emax取65535,Lmax和Lmin分别为转换前L0中像素灰度最大值和最小值;步骤4.3:转换后增强图像E中的背景区域像素为非0值,故需将背景剔除,即将背景区域像素值置为0,采用如下公式:步骤4.4:背景还原:剔除背景后需加上之前图像分割步骤4中的背景图像bak,即可得到最终的和原始图像背景保持一致的增强图像,公式如下:E(x,y)=E(x,y)+bak(x,y)。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中广核贝谷科技有限公司,未经中广核贝谷科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910247876.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top