[发明专利]一种基于深度学习与多目标分布排序的航空插头孔位识别方法有效
申请号: | 201910264451.9 | 申请日: | 2019-04-03 |
公开(公告)号: | CN110059676B | 公开(公告)日: | 2021-05-07 |
发明(设计)人: | 郑联语;李树飞 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06K9/20 | 分类号: | G06K9/20;G06K9/46;G06K9/62;G06T7/73;G06T7/90 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习与多目标分布排序的航空插头孔位识别方法,包括以下步骤:启动相机并初始化,捕获航空插头图像,训练插头定位网络模型在工业场景图像中定位航空插头目标,判断候选目标是否满足尺寸约束条件,从图像中裁剪插头孔位区域,训练孔位识别网络模型识别插头孔位区域的孔位与防错销钉阵列,根据多目标排序原理编号航空插头孔位阵列,判定航空插头孔位安装状态,匹配数据库并输出识别结果。该基于深度学习与多目标分布排序的航空插头孔位识别方法通过拍摄航空插头图像,视觉识别航空插头与插头孔位,对插头孔位进行排序编号,判定航空插头的安装结果,节省了检验航空插头孔位安装状态的人力成本且效率高。 | ||
搜索关键词: | 一种 基于 深度 学习 多目标 分布 排序 航空 插头 识别 方法 | ||
【主权项】:
1.一种基于深度学习与多目标分布排序的航空插头孔位识别方法,其特征在于,该方法包含:S1、启动相机并初始化,设置相机的对焦模式,调整相机闪光灯的亮度;S2、相机对焦完成后,在现场工业场景下捕获航空插头正面图像;S3、将捕获的航空插头图像送入训练完成的插头定位网络模型,输出航空插头的类别及在图像坐标系下的插头坐标,作为航空插头候选目标;S4、判断航空插头候选目标是否满足尺寸约束条件,若不满足,重复步骤S2与S3,重新捕获航空插头图像;S5、若航空插头候选目标满足所述S4中的尺寸约束条件,根据所述S3中插头定位网络模型输出的插头坐标从图像中裁剪插头孔位区域;S6、将插头孔位区域送入训练完成的孔位识别网络模型,输出插头孔位区域中的插头孔位坐标与防错销钉坐标,完成插头孔位区域中的插头孔位与防错销钉的类别识别与位置检测;S7、根据插头孔位坐标与防错销钉坐标,对插头孔位和防错销钉进行阵列多目标排序,对插头孔位进行编号;S8、判定每个插头孔位的安装状态,判断该插头孔位中是否安装导线,进而得知整个航空插头的安装结果;S9、将航空插头的安装结果匹配数据库中的安装结果,输出航空插头安装检验结果,判别航空插头安装结果是否与数据库保持一致。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910264451.9/,转载请声明来源钻瓜专利网。