[发明专利]一种基于三维残差神经网络和视频序列的动态手语识别方法在审
申请号: | 201910282569.4 | 申请日: | 2019-04-09 |
公开(公告)号: | CN110110602A | 公开(公告)日: | 2019-08-09 |
发明(设计)人: | 闵卫东;廖艳秋;熊鹏文;韩清;张愚;徐剑强;邹松;熊辛;汪琦 | 申请(专利权)人: | 南昌大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/32;G06K9/62;G06N3/04;G06N3/08;G06T7/194 |
代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 胡群 |
地址: | 330000 江西省*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于三维残差神经网络和视频序列的动态手语识别方法,所述方法提出了基于三维残差神经网络的新模型B3D ResNet,包括以下步骤:步骤1,在视频帧中,采用Faster R‑CNN模型检测手的位置,并从背景中分割出手;步骤2,利用B3D ResNet模型对输入的视频序列进行手势的时空特征提取和特征序列分析;步骤3,通过对输入的视频序列进行分类,可以识别手势,有效地实现动态手语识别。本发明通过分析视频序列的时空特征,可以提取有效的动态手势时空特征序列,从而达到识别不同手势的目的,并且在复杂或类似的手语识别上也获得了良好的性能。通过测试数据集的实验结果表明,本发明可以准确有效地区分不同的手语,以及相似的手势对。 | ||
搜索关键词: | 视频序列 手势 手语识别 神经网络 时空特征 残差 三维 测试数据集 有效地实现 模型检测 特征序列 视频帧 有效地 手语 分析 分割 分类 | ||
【主权项】:
1.一种基于三维残差神经网络和视频序列的动态手语识别方法,其特征在于:所述方法提出了基于三维残差神经网络的新模型B3D ResNet,包括以下步骤:步骤1,在视频帧中,采用Faster R‑CNN模型检测手的位置,并从背景中分割出手;步骤2,利用B3D ResNet模型对输入的视频序列进行手势的时空特征提取和特征序列分析;步骤3,通过对输入的视频序列进行分类,可以识别手势,有效地实现动态手语识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南昌大学,未经南昌大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910282569.4/,转载请声明来源钻瓜专利网。