[发明专利]一种基于深度强化学习的防碰撞控制方法有效

专利信息
申请号: 201910283506.0 申请日: 2019-04-10
公开(公告)号: CN110027553B 公开(公告)日: 2020-10-23
发明(设计)人: 谢国涛;王静雅;胡满江;秦晓辉;王晓伟;徐彪;秦兆博;孙宁;钟志华 申请(专利权)人: 湖南大学
主分类号: B60W30/08 分类号: B60W30/08
代理公司: 北京汇智胜知识产权代理事务所(普通合伙) 11346 代理人: 石辉
地址: 410082 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度强化学习的防碰撞控制方法,采用深度确定性策略梯度方法(DDPG算法)进行深度强化学习,该方法包括:步骤1,提取本车参数和环境车辆参数;步骤2,利用本车参数和环境车辆参数,构建虚拟环境模型;步骤3,根据本车参数和环境车辆参数和虚拟环境模型,定义所述深度确定性策略梯度方法的基础参数;步骤4,根据步骤3定义好的基础参数,采用深度强化学习中的神经网络构建防碰撞控制决策系统,所述防碰撞控制决策系统包括策略网络和评价网络;步骤5,训练所述策略网络和评价网络,得到所述防碰撞控制决策系统。本发明通过构建基于深度神经网络的防碰撞控制决策系统,基于时间差分强化学习方法不断优化网络控制结果的防碰撞控制决策系统,有效提高了防碰撞控制决策系统的控制性能。
搜索关键词: 一种 基于 深度 强化 学习 碰撞 控制 方法
【主权项】:
1.一种基于深度强化学习的防碰撞控制方法,其特征在于,采用深度确定性策略梯度方法进行深度强化学习,该方法包括如下步骤:步骤1,提取本车参数和环境车辆参数;步骤2,利用步骤1提取得到的本车参数和环境车辆参数,构建虚拟环境模型;步骤3,根据步骤1提取得到的本车参数和环境车辆参数和步骤2构建得到的虚拟环境模型,定义所述深度确定性策略梯度方法的基础参数,所述基础参数包括:虚拟环境模型在当前时刻t的状态st、虚拟环境模型在下一时刻t+1的状态st+1、所述本车(1)基于st能够进行防碰撞控制的动作at、动作at对应的回报值rt;步骤4,根据步骤3定义好的基础参数,采用深度强化学习中的神经网络构建防碰撞控制决策系统,所述防碰撞控制决策系统包括策略网络(5)和评价网络(6),所述策略网络(5)的输入是状态s,输出是动作a;所述评价网络(6)的输入是状态s和动作a,输出是Q值:Q(s,a);步骤5,训练所述策略网络(5)和评价网络(6),得到所述防碰撞控制决策系统:首先,设置所述虚拟环境模型的当前状态表示为st,作为所述策略网络(5)的输入,并在所述策略网络(5)上加高斯扰动,所述策略网络(5)输出一个动作at;在本车(1)接收到所述动作at后,所述评价网络(6)生成对所述动作at评价的回报值rt,同时检测获得下一时刻状态st+1;然后,根据所述回报值rt更新所述评价网络(6)的参数,并沿所述评价网络(6)建议的方向更新所述策略网络(5)的参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910283506.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top