[发明专利]基于自编码器融合文档信息的事件触发词抽取方法及系统有效
申请号: | 201910288771.8 | 申请日: | 2019-04-11 |
公开(公告)号: | CN110135457B | 公开(公告)日: | 2021-04-06 |
发明(设计)人: | 程学旗;靳小龙;席鹏弼;郭嘉丰;赵越 | 申请(专利权)人: | 中国科学院计算技术研究所 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F16/36 |
代理公司: | 北京律诚同业知识产权代理有限公司 11006 | 代理人: | 祁建国;梁挥 |
地址: | 100080 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于自编码器融合文档信息的事件触发词抽取方法,包括:以未标注自由文本语料生成训练集,训练GRU模型以构建该自编码器;对训练语料进行预处理和标签标注,提取待识别词;以该自编码器获取该待识别词在其所在文档内的文档向量,作为该待识别词的全局特征;以该待识别词的词向量和实体类型分布式表达,作为该待识别词的局部特征;将该全局特征和该局部特征进行向量拼接,获得该待识别词的上下文特征;将该上下文特征输入Bi‑GRU模型进行多分类,以识别该待识别词是否为事件触发词及该待识别词的对应事件类型。 | ||
搜索关键词: | 基于 编码器 融合 文档 信息 事件 触发 抽取 方法 系统 | ||
【主权项】:
1.一种基于自编码器融合文档信息的事件触发词抽取方法,其特征在于,包括:以未标注自由文本语料生成训练集,训练GRU模型以构建自编码器;对训练语料进行预处理和标签标注,提取待识别词;以该自编码器获取该待识别词在其所在文档的文档向量,作为该待识别词的全局特征;以该待识别词的词向量和实体类型分布式表达,作为该待识别词的局部特征;将该全局特征和该局部特征进行向量拼接,获得该待识别词的上下文特征;将该上下文特征输入Bi‑GRU模型进行多分类,以判断该待识别词是否为事件触发词及该待识别词的对应事件类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910288771.8/,转载请声明来源钻瓜专利网。