[发明专利]基于自编码器融合文档信息的事件触发词抽取方法及系统有效

专利信息
申请号: 201910288771.8 申请日: 2019-04-11
公开(公告)号: CN110135457B 公开(公告)日: 2021-04-06
发明(设计)人: 程学旗;靳小龙;席鹏弼;郭嘉丰;赵越 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06K9/62 分类号: G06K9/62;G06F16/36
代理公司: 北京律诚同业知识产权代理有限公司 11006 代理人: 祁建国;梁挥
地址: 100080 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于自编码器融合文档信息的事件触发词抽取方法,包括:以未标注自由文本语料生成训练集,训练GRU模型以构建该自编码器;对训练语料进行预处理和标签标注,提取待识别词;以该自编码器获取该待识别词在其所在文档内的文档向量,作为该待识别词的全局特征;以该待识别词的词向量和实体类型分布式表达,作为该待识别词的局部特征;将该全局特征和该局部特征进行向量拼接,获得该待识别词的上下文特征;将该上下文特征输入Bi‑GRU模型进行多分类,以识别该待识别词是否为事件触发词及该待识别词的对应事件类型。
搜索关键词: 基于 编码器 融合 文档 信息 事件 触发 抽取 方法 系统
【主权项】:
1.一种基于自编码器融合文档信息的事件触发词抽取方法,其特征在于,包括:以未标注自由文本语料生成训练集,训练GRU模型以构建自编码器;对训练语料进行预处理和标签标注,提取待识别词;以该自编码器获取该待识别词在其所在文档的文档向量,作为该待识别词的全局特征;以该待识别词的词向量和实体类型分布式表达,作为该待识别词的局部特征;将该全局特征和该局部特征进行向量拼接,获得该待识别词的上下文特征;将该上下文特征输入Bi‑GRU模型进行多分类,以判断该待识别词是否为事件触发词及该待识别词的对应事件类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910288771.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top