[发明专利]基于层次聚类和神经网络的负荷预测输入特征筛选方法在审
申请号: | 201910294713.6 | 申请日: | 2019-04-12 |
公开(公告)号: | CN110135623A | 公开(公告)日: | 2019-08-16 |
发明(设计)人: | 丁研;宿皓;王翘楚;张震勤 | 申请(专利权)人: | 天津大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/02 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 程小艳 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于层次聚类和神经网络的负荷预测输入特征筛选方法,该方法利用层次聚类分析将包括负荷预测的原始数据集进行聚类,将数据集根据其特征分为不同的类,对每一类中的特征进行分析,利用神经网络对每一类中的不同特征的预测效果进行分析,最终剔除预测效果较差的特征,得到最终优化的建筑负荷预测的输入特征集。本发明可以对冗杂的负荷预测输入数据集进行筛选,降低负荷预测的复杂性,提高负荷预测的计算速度,同时保留数据集中的有效特征,保证负荷预测的准确性。 | ||
搜索关键词: | 负荷预测 层次聚类 神经网络 输入特征 筛选 预测 输入数据集 原始数据集 保留数据 建筑负荷 有效特征 分析 数据集 特征集 聚类 剔除 优化 保证 | ||
【主权项】:
1.基于层次聚类和神经网络的负荷预测输入特征筛选方法,其特征在于,包括以下步骤:1)对负荷预测的原始数据进行层次聚类分析,得到负荷预测输入数据的有层次的嵌套聚类树;2)根据层次聚类中的簇间距离确定建筑负荷预测输入参数聚类簇个数;3)利用神经网络对每一类的数据中不同参数的预测效果进行判断,剔除预测较差的参数,得到优化的负荷预测输入特征集。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910294713.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理