[发明专利]一种基于双向嵌套LSTM神经网络的交通流预测方法有效

专利信息
申请号: 201910298059.6 申请日: 2019-04-15
公开(公告)号: CN110070713B 公开(公告)日: 2021-01-01
发明(设计)人: 徐东伟;彭鹏;王永东;戴宏伟;宣琦 申请(专利权)人: 浙江工业大学
主分类号: G08G1/01 分类号: G08G1/01;G06Q10/04;G06Q50/26;G06N3/04
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于双向嵌套LSTM神经网络的交通流预测方法,该方法基于道路交通流相关性矩阵获取预测路段及K个最相关路段的交通流数据,构建道路交通流时空矩阵数据集并进行数据序列化处理;然后构建双向嵌套LSTM神经网络预测模型,定义预测模型损失函数,结合训练集数据,完成模型训练;最后以测试集数据作为训练后模型的输入,实现测试集交通流状态的实时预测并定义模型评价标准,进行误差分析。本发明通过改善LSTM单元时间层级效应和考虑未来、历史交通流状态与现有状态的联系,提高了道路交通流数据的时间特征提取能力,从而提高了道路交通流的预测精度。
搜索关键词: 一种 基于 双向 嵌套 lstm 神经网络 通流 预测 方法
【主权项】:
1.一种基于双向嵌套LSTM神经网络的交通流预测方法,其特征在于,所述方法包括以下步骤:(1)选取道路交通网络某一区域作为研究对象,获取道路交通流数据,进行路段交通流相关性分析,形成道路交通相关性矩阵;(2)根据交通流相关性分析结果,获取相关路段交通流数据进行数据预处理;构建道路交通流时空矩阵数据集,划分训练集与测试集的步骤;对数据集进行序列化;(3)构建双向嵌套LSTM神经网络,将交通流时空数据训练集作为模型输入,定义预测模型损失函数,完成模型训练;(4)将交通流时空数据测试集作为预测模型输入,实现交通流未来状态预测;定义模型评价指标并对模型预测结果进行误差分析。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910298059.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top