[发明专利]一种基于深度学习的线缆顺序检测方法有效
申请号: | 201910299722.4 | 申请日: | 2019-04-15 |
公开(公告)号: | CN110136098B | 公开(公告)日: | 2023-07-18 |
发明(设计)人: | 汪钰人;刘国海;沈继锋 | 申请(专利权)人: | 江苏大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的线缆顺序检测方法,包括以下步骤:步骤1:首先对线缆图像进行灰度化,为后续顺序检测做基础;步骤2:对图像某一行的相邻像素点灰度值进行差分运算,选取一个阈值和差分结果比较,输出定位结果图。步骤3:针对三色线缆图像的特点,提出了简化的特征提取网络和优化的锚框、ELU激活函数对Faster R‑CNN改进;步骤4:采用改进的Faster R‑CNN目标检测算法进行线缆顺序检测,并统计准确率和检测时间。本发明方法能够更加充分的提取三色线缆的特征,具有操作方便、效率高等优点,节省了很多的人力消耗,所采用的改进算法能同时减少了线缆的检测时间,减少误检,错检并大大提升了线缆检测的准确率。 | ||
搜索关键词: | 一种 基于 深度 学习 线缆 顺序 检测 方法 | ||
【主权项】:
1.一种基于深度学习的线缆顺序检测方法,其特征在于,包括以下步骤:步骤1:首先对三色线缆图像进行灰度化,为后续顺序检测做基础;步骤2:对图像某一行的相邻像素点灰度值进行差分运算,选取一个阈值和差分结果比较,输出定位结果图;步骤3:针对三色线缆图像的特点,提出了简化的特征提取网络和优化的锚框、ELU激活函数对Faster R‑CNN改进;步骤4:将改进后的Faster R‑CNN算法进行线缆顺序检测,并统计准确率和检测时间。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910299722.4/,转载请声明来源钻瓜专利网。