[发明专利]一种基于层次注意力网络的动态新闻推荐的方法有效
申请号: | 201910302363.3 | 申请日: | 2019-04-16 |
公开(公告)号: | CN110032679B | 公开(公告)日: | 2021-06-15 |
发明(设计)人: | 马帅;张晖;陈旭 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06F16/9535 | 分类号: | G06F16/9535;G06N3/04 |
代理公司: | 北京中创阳光知识产权代理有限责任公司 11003 | 代理人: | 尹振启 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于层次注意力网络的动态新闻推荐的方法,采用的模块包括层次注意力网络,卷积层和全连接层;在所述层次注意力网络中包括句子水平的注意力网络和新闻水平的注意力网络。用户的新闻序列和候选新闻,经过所述句子水平的注意力网络,得到所述新闻序列中句子的注意力权重,然后计算句子内容向量的加权和得到新闻的内容向量,所述新闻序列的嵌入表示与所述内容向量连接得到所述新闻的整体表示,所述整体表示经过所述新闻水平的注意力网络,获得所述新闻序列中新闻的注意力权重,得到新闻的最终表示;在卷积层中,按序堆叠历史新闻的最终表示得到矩阵,输入卷积层学习用户序列阅读模式,得到序列偏好向量;在全连接层中,将所述序列偏好向量、候选新闻整体表示和用户嵌入表示进行连接,得到用户点击候选新闻的概率。 | ||
搜索关键词: | 一种 基于 层次 注意力 网络 动态 新闻 推荐 方法 | ||
【主权项】:
1.一种基于层次注意力网络的动态新闻推荐的方法,其特征在于,所述方法采用的模块包括层次注意力网络,卷积层和全连接层;在所述层次注意力网络中包括句子水平的注意力网络和新闻水平的注意力网络。用户的新闻序列和候选新闻经过所述句子水平的注意力网络,得到所述新闻序列中句子sjk的注意力权重βjk,所述k是句子的序数,j是新闻的序数,所述sjk是新闻cj的第k个句子,然后计算句子内容向量加权和得到新闻cj的内容向量v(cj),所述新闻cj的嵌入表示e(cj)与所述内容向量连接得到所述新闻cj的整体表示[v(cj)||e(cj)],所述整体表示经过所述新闻水平的注意力网络,使用时间衰减因子,获得所述新闻cj的注意力权重αj,通过[v(cj)||e(cj)]和αj,得到所述新闻cj的最终表示xj;在卷积层中,按序堆叠历史新闻的最终表示得到矩阵,输入卷积层学习用户序列阅读模式,得到序列偏好向量pi;在全连接层中,将所述序列偏好向量pi、候选新闻整体表示[v(c*)||e(c*)]和用户嵌入表示ui进行连接,得到用户点击候选新闻c*的概率
所述i为用户的序数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910302363.3/,转载请声明来源钻瓜专利网。
- 上一篇:业务资源推送方法和装置、存储介质和电子装置
- 下一篇:大数据分析方法及系统