[发明专利]一种预测员工离职的方法及系统在审

专利信息
申请号: 201910307472.4 申请日: 2019-04-17
公开(公告)号: CN109934420A 公开(公告)日: 2019-06-25
发明(设计)人: 张程;原佳琪;徐璐 申请(专利权)人: 重庆大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/06;G06K9/62
代理公司: 重庆双马智翔专利代理事务所(普通合伙) 50241 代理人: 顾晓玲
地址: 400030 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种预测员工离职的方法及系统。该方法包括:构建第一训练集和第一验证集;建立第一随机森林预测模型,将第一训练集的所有特征按照重要度的高低依次排序,分别从第一训练集和第一验证集所有特征中选取重要度排名前m个特征作为特征子集,构建第二训练集和第二验证集;基于第二训练集建立第二随机森林预测模型,将决策树的投票权值依据所述决策树的F‑measure值重新设置,获得离职预测模型;将测试集输入离职预测模型获得离职预测结果。基于传统随机森林算法,对数据特征的重要性进行排序以减少数据维度,节约了空间和时间成本,提高了预测效率;建立决策树的不同权值,解决数据不平衡问题。
搜索关键词: 训练集 预测模型 随机森林 决策树 验证集 重要度 构建 排序 预测 时间成本 数据特征 数据维度 特征子集 预测结果 重新设置 测试集 员工 算法 节约
【主权项】:
1.一种预测员工离职的方法,其特征在于,包括:步骤S1,获取已分类员工数据并构建第一训练集和第一验证集;步骤S2,基于第一训练集建立第一随机森林预测模型,利用袋外数据获得第一训练集中每个特征的重要度,将第一训练集的所有特征按照重要度的高低依次排序,分别从第一训练集和第一验证集所有特征中选取重要度排名前m个特征作为特征子集,构建第二训练集和第二验证集;所述m为正整数;步骤S3,基于第二训练集建立第二随机森林预测模型,利用第二验证集计算第二随机森林预测模型中每棵决策树的F‑measure值,将决策树的投票权值依据所述决策树的F‑measure值重新设置,获得离职预测模型;步骤S4,从待预测员工的数据中提取出特征子集为重要度排名中前m个特征的测试集,将测试集输入离职预测模型,离职预测模型输出待预测员工的离职预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910307472.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top