[发明专利]一种训练识别面部表情的方法和装置在审

专利信息
申请号: 201910308236.4 申请日: 2019-04-17
公开(公告)号: CN110046576A 公开(公告)日: 2019-07-23
发明(设计)人: 房建东;刘雨桐;李巴津 申请(专利权)人: 内蒙古工业大学
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04
代理公司: 北京金信知识产权代理有限公司 11225 代理人: 喻嵘;郭迎侠
地址: 010051 内蒙古*** 国省代码: 内蒙古;15
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提供了一种训练识别面部表情的方法和装置,所述方法包括:获取训练数据,其中,所述训练数据,是N类面部表情中一类面部表情的图像数据,N是大于1的整数;利用所述训练数据训练第一网络模型达到预设识别面部表情的精度,从而获得优化的第一网络模型;其中,所述第一网络模型,包括特定结构的VGG19网络模型及依次连接在所述特定结构的VGG19网络模型后的一层全连接层、一层Dropout层和一层Softmax层;所述特定结构的VGG19网络模型,包括VGG19网络模型的输入层、池化层和卷积层;所述Softmax层,包括激活函数为Softmax函数的N个节点的全连接层;在训练时所述第一网络模型根据预设参数开始训练。本申请在非可控条件下,受光照等复杂背景影响较小,鲁棒性强。
搜索关键词: 网络模型 面部表情 训练数据 方法和装置 连接层 复杂背景 激活函数 可控条件 图像数据 依次连接 预设参数 鲁棒性 输入层 池化 卷积 预设 申请 光照 优化
【主权项】:
1.一种训练识别面部表情的方法,其特征在于,包括:获取训练数据,其中,所述训练数据,是N类面部表情中一类面部表情的图像数据,N是大于1的整数;利用所述训练数据训练第一网络模型达到预设识别面部表情的精度,从而获得优化的第一网络模型;其中,所述第一网络模型,包括特定结构的VGG19网络模型及依次连接在所述特定结构的VGG19网络模型后的一层全连接层、一层Dropout层和一层Softmax层;所述特定结构的VGG19网络模型,包括VGG19网络模型的输入层、池化层和卷积层;所述Softmax层,包括激活函数为Softmax函数的N个节点的全连接层;在训练时所述第一网络模型根据预设参数开始训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于内蒙古工业大学,未经内蒙古工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910308236.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top