[发明专利]胶囊残差神经网络、胶囊残差神经网络的图像分类方法有效
申请号: | 201910309297.2 | 申请日: | 2019-04-17 |
公开(公告)号: | CN110009097B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 匡平;李凡;何明耘;王豪爽;李小芳 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06N3/045 | 分类号: | G06N3/045;G06N3/0464;G06V10/82;G06V10/764;G06V10/774;G06V10/80 |
代理公司: | 成都华风专利事务所(普通合伙) 51223 | 代理人: | 张巨箭;张涵 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种胶囊残差神经网络和基于胶囊残差神经网络的图像分类方法,属于图像处理技术领域,胶囊残差神经网络包括CNN前端和胶囊残差神经网络后端;CNN前端包括第一残差网络和第二残差网络,第一残差网络包括若干基本识别模块和快捷方式的标识块;第二残差网络包括若干基本识别模块;基本识别模块和快捷方式的标识块包括若干卷积层和批标准化层;胶囊残差神经网络后端包括第一胶囊层和第二胶囊层,第一胶囊层输出数据信息到第二胶囊层。本发明能够解决现有技术中卷积神经网络出现的梯度消失问题且不会引入大量参数增加计算难度,进一步提高图像分类精度。 | ||
搜索关键词: | 胶囊 神经网络 图像 分类 方法 | ||
【主权项】:
1.一种胶囊残差神经网络,其特征在于:所述胶囊残差神经网络包括CNN前端和胶囊残差神经网络后端,所述CNN前端输出数据信息至所述胶囊残差神经网络后端;所述CNN前端包括第一残差网络和第二残差网络,所述第一残差网络输出数据信息至所述第二残差网络;所述第一残差网络包括若干基本识别模块和快捷方式的标识块,所述第二残差网络包括若干基本识别模块;所述基本识别模块包括若干卷积层和批标准化层,所述基本识别模块接收到的数据信息经第一卷积层、第一批标准化层、第二卷积层输入到第二批标准化层;所述快捷方式的标识块包括若干卷积层和批标准化层;所述快捷方式的标识块接收到的数据信息输出至两部分,其中一部分经第三卷积层、第三批标准化层、第四卷积层输入到第四批标准化层,另一部分经第五卷积层输入到第五批标准化层;所述胶囊残差神经网络后端包括第一胶囊层和第二胶囊层,所述第一胶囊层输出数据信息到所述第二胶囊层。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910309297.2/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序