[发明专利]一种用于配合拍照场景的快速高精度身份证文本识别算法有效
申请号: | 201910311448.8 | 申请日: | 2019-04-18 |
公开(公告)号: | CN110414517B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 郭永强;刘铜强;罗俊;熊浩;陈亮;谢运展 | 申请(专利权)人: | 河北神玥软件科技股份有限公司 |
主分类号: | G06V20/62 | 分类号: | G06V20/62;G06V30/146;G06V30/148;G06V30/162;G06V30/164;G06V30/19;G06V10/82;G06N3/04 |
代理公司: | 南京鼎傲知识产权代理事务所(普通合伙) 32327 | 代理人: | 郭元聪 |
地址: | 050000 河北省石家庄市鹿*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种用于配合拍照场景的快速高精度身份证文本识别算法,它涉及一图像处理、模式识别和深度学习技术领域。它包含如下步骤:预处理→字符分割→字符识别;所述预处理的具体步骤为:移动端拍照后上传身份证原始图片,之后存储在云端,并对输入的原始图片进行处理,即将其调整为960×600的固定尺寸,再用gamma算法来进行光照矫正,之后用中值滤波对图片降噪,取平滑的像素区域为3×3,最后用加权平均法将图片由彩色图转为灰度图,转为灰度图后,将图片边缘的像素值设为0(黑色)。采用上述技术方案后,本发明有益效果为:在字符分割中定位头像”提出了基于行或列投影的头像快速定位方法,比传统的基于连通域的头像定位方法具有更低的时间复杂度。 | ||
搜索关键词: | 一种 用于 配合 拍照 场景 快速 高精度 身份证 文本 识别 算法 | ||
【主权项】:
1.一种用于配合拍照场景的快速高精度身份证文本识别算法,其特征在于:它包含如下步骤:预处理→字符分割→字符识别;所述预处理的具体步骤为:移动端拍照后上传身份证原始图片,之后存储在云端,并对输入的原始图片进行处理,即将其调整为960×600的固定尺寸,再用gamma算法来进行光照矫正,之后用中值滤波对图片降噪,取平滑的像素区域为3×3,最后用加权平均法将图片由彩色图转为灰度图,转为灰度图后,将图片边缘的像素值设为0(黑色);所述字符分割的具体步骤为:定位头像→灰度图二值化→在二值图上祛除头像→水平矫正→行分割及后验处理→列分割及后验处理→提取单字符图;所述定位头像的具体步骤为:首先、将身份证图片进行行投影,累计每行点的灰度值:
其中W和H分别表示身份证图片的宽和高,f表示中点的灰度值,对得到的行投影曲线在行点灰度值的1/4高度区域内从上往下遍历,求出第一个局部最小值点,从该点对应的行位置即可先将身份证号码部分分割出去;其次、对身份证号码分割出去后剩下的图像进行列投影,累计每列点的灰度值:
对得到的列投影曲线在列点灰度值的33/80宽度区域内从左往右遍历,求出第一个局部最小值点,利用该点对应的列位置和首先中得到的行位置,即可共同确定出头像的闭包边界,从而定位出头像区域;所述灰度图二值化的具体步骤为:使用sauvola算法对身份证灰度图进行二值化;所述在二值图上祛除头像的具体步骤为:在二值化后的身份证图片上,将之前定位的头像区域的点的值全置为0;所述水平矫正的具体步骤为:利用radon算法对二值化后祛除头像的身份证图片进行水平矫正;所述行分割及后验处理的具体步骤为:首先、对二值化、祛除头像并完成水平矫正后的身份证图片进行行投影,等价于计算每行白色像素点的个数:
式中g为二值函数;其次、用双阈值法来初步确定文本行的上下界;最后、进行后验处理;所述列分割及后验处理的具体步骤为:首先、按照行分割及后验处理输出的行坐标组从二值图中依次单独切分出每个文本行,并对该文本行进行列投影,即等价于计算一个文本行中每列白色像素点的个数:
式中g为二值函数;其次、遍历列投影曲线,依然用双阈值法初步确定每列的列左界和列右界,对每个文本行都输出一组列坐标{(jl,jr)}(下标中“l”表示“left”,“r”表示“right”);最后、对列坐标组进行后验处理;所述提取单字符图的具体步骤为:首先、将列坐标集扩为为行列坐标集,同一个列坐标组里的所有列坐标对应同一个行坐标,将列坐标集里的所有列坐标分别和其所对应的行坐标拼起来,即形成四维坐标,其中四维是指:行上界,行下界,列左界,列右界,用数学语言表示为:(iu,id,jl,jr) (2.10)从而整体上,将列坐标集扩展为行列坐标集,一个单字符图可以由四维坐标唯一确定,行列坐标集包含了身份证上所有单字符图的坐标;其次、从行列坐标集中删除不需要识别的单字符图坐标,并对剩下的单字符图坐标进行分类;身份证上的字符“姓名”、“性别”、“民族”、“出生”、“年”“月”“日”、“住址”、“公民身份证号码”这些字符在每个人的身份证上的位置都是固定的,不需要识别,而身份证上的其他字符的含义可依据这些字符确定,具体做法为:1、将行列坐标集中的第一组中的前两个字符坐标删除,将第一组剩下的字符坐标都归类为“姓名”;2、将行列坐标集中的第二组中的前两个字符坐标删除,将第二组中的第三个字符坐标归类为“性别”;将第二组中的第四和第五个字符坐标删除,将第二组剩下的字符坐标都归类为“民族”;3、将行列坐标集中的第三组中的前两个字符坐标删除;将第三组中的第四、五、六、七个字符坐标都归类为“年”,将第三组中的第八个字符坐标删除;将第三组中的第九和第十个字符坐标都归类为“月”,将第三组中的第十一个字符坐标删除;将第三组中的第十二和第十三个字符坐标都归类为“日”,这组剩下的字符坐标都删除;4、将行列坐标集中的第四组中的前两个字符坐标删除;将第四组剩下的字符坐标都归类为“住址”;5、将行列坐标集中的第五组中的前六个字符坐标删除;将第五组剩下的字符坐标都归类为“公民身份号码”;最后、依据完成删除后的行列坐标集中的字符坐标,将需要识别的单字符图从身份证二值化图中都切割出来,即为字符分割环节的最终输出;所述字符识别的具体步骤为:调整尺寸→用深度加权残差网络识别→整理识别结果→输出文本;所述调整尺寸的具体步骤为:利用双线性插值法将所有单字符图的尺寸调整为32×32;所述用深度加权残差网络识别的具体步骤为:将调整尺寸后的所有单字符图批量送入本发明提出的深度加权残差网络中进行识别,输出每张单字符图对应的汉字或数字文本;所述整理识别结果的具体步骤为:将所有单字符图都送入深度加权残差网络进行识别后;所述输出文本的具体步骤为:识别后将所属分类相同的单字符图的识别结果合并输出即可。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北神玥软件科技股份有限公司,未经河北神玥软件科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910311448.8/,转载请声明来源钻瓜专利网。