[发明专利]短文本主题识别方法和系统在审

专利信息
申请号: 201910311522.6 申请日: 2019-04-18
公开(公告)号: CN110046228A 公开(公告)日: 2019-07-23
发明(设计)人: 刘业政;钱洋;陶丹丹;姜元春;毕文亮;孙见山;孙春华;陈夏雨;凌海峰 申请(专利权)人: 合肥工业大学
主分类号: G06F16/33 分类号: G06F16/33;G06F16/35;G06F17/27
代理公司: 北京久诚知识产权代理事务所(特殊普通合伙) 11542 代理人: 余罡
地址: 230009 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种短文本主题识别方法和系统,涉及数据处理技术领域。本发明包括以下步骤:S1、获取第一语料集和第二语料集,所述第一语料集为待处理的短文本数据集,所述第二语料集为辅助语料集;S2、基于所述第二语料集上单词得到隐特征向量,基于所述第一语料集构建狄利克雷过程混合模型;S3、基于所述隐特征向量和所述狄利克雷过程混合模型构建非参主题模型;S4、对所述非参主题模型的主题后验分布进行参数推断;S5、基于参数推断识别出第一语料集中主题数量,同时得到第一语料集中文档‑主题分布以及主题‑词分布。本发明通构建狄利克雷过程混合模型以及引进词的隐特征向量表示,能有效缓解稀疏性问题,从而提高短文本主题识别的准确性。
搜索关键词: 语料 混合模型 特征向量 短文本 构建 参数推断 主题模型 主题识别 数据处理技术 后验分布 有效缓解 主题分布 数据集 稀疏性 文档 单词
【主权项】:
1.一种短文本主题识别方法,其特征在于,包括以下步骤:S1、获取第一语料集和第二语料集,所述第一语料集为待处理的短文本数据集,所述第二语料集为辅助语料集;S2、基于所述第二语料集上单词得到隐特征向量以及基于所述第一语料集构建狄利克雷过程混合模型;S3、基于所述隐特征向量和所述狄利克雷过程混合模型构建非参主题模型;S4、对所述非参主题模型的主题后验分布进行参数推断;S5、基于参数推断识别出第一语料集中主题数量,同时得到第一语料集中文档‑主题分布以及主题‑词分布。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910311522.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top