[发明专利]基于DenseNet和多尺度特征融合的目标检测方法有效
申请号: | 201910314505.8 | 申请日: | 2019-04-18 |
公开(公告)号: | CN110084292B | 公开(公告)日: | 2023-06-06 |
发明(设计)人: | 曹毅;翟明浩;张威;刘晨;盛永健;黄子龙;李巍;张宏越;易灵杰 | 申请(专利权)人: | 江南大学 |
主分类号: | G06V10/80 | 分类号: | G06V10/80;G06V10/774;G06V10/82;G06N3/0464 |
代理公司: | 无锡盛阳专利商标事务所(普通合伙) 32227 | 代理人: | 顾吉云;黄莹 |
地址: | 214000 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供基于DenseNet和多尺度特征融合的目标检测方法,其包括:S1构建特征提取网络模型;S2训练特征提取网络模型,通过多次迭代训练得到最优目标检测模型;S3将待检测图像数据输入到最优目标检测模型进行检测,在待检测图像上用矩形框标注每个物体的位置和类别;特征提取网络模型以DenseNet网络为基础网络,加深了网络层次,提高了特征质量,同时使用特征融合模块,引入上下文信息,得到六个用于最终预测的特征图,具有丰富的语义信息和较高的分辨率。本发明方法可在保证检测速度的基础上,降低模型规模,提升对小目标的检测精度。 | ||
搜索关键词: | 基于 densenet 尺度 特征 融合 目标 检测 方法 | ||
【主权项】:
1.基于DenseNet和多尺度特征融合的目标检测方法,其包括以下步骤:S1:构建特征提取网络模型;S2:训练所述特征提取网络模型,利用融合后的特征图对模型进行分类和回归,得到目标检测模型,通过多次迭代训练得到最优目标检测模型;S3:将待检测图像数据输入到S2中得到的所述最优目标检测模型,利用所述最优目标检测模型进行检测,在所述待检测图像上用矩形框标注每个物体的位置和类别;其特征在于:步骤S1中所述特征提取网络模型以DenseNet网络为基础网络,由4个Dense block与3个过渡层交替拼接而成;而后依次连接三组卷积层Conv1~Conv3;其还包括特征融合模块,将低层细节特征图与高层语义特征图进行融合,引入上下文信息,提高特征的表征能力;经过所述特征提取网络模型共提取出六个不同尺度的卷积特征图,分别为Denseblock2、Denseblock3、Denseblock4、Conv1、Conv2、Conv3,所述特征融合模块将特征图Denseblock2与Denseblock4相融合,特征图Denseblock3与Conv1相融合,得到六个用于最终预测的特征图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910314505.8/,转载请声明来源钻瓜专利网。