[发明专利]一种电力系统暂态稳定预测模型的更新方法有效

专利信息
申请号: 201910321444.8 申请日: 2019-04-22
公开(公告)号: CN110336270B 公开(公告)日: 2021-02-02
发明(设计)人: 孙宏斌;郭庆来;周艳真;王彬;吴文传;张伯明 申请(专利权)人: 清华大学
主分类号: H02J3/00 分类号: H02J3/00;H02H7/26
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 罗文群
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种电力系统暂态稳定预测模型的更新方法,属于电力系统稳定控制技术领域。首先对初始训练场景集考虑的运行工况和预想故障进行统计,根据未来场景的预测情况,将其与已训练场景的运行工况和预想故障进行对比,根据对比结果判断是否启动暂态稳定预测模型的更新过程。本发明将未来场景集分为未计算暂态稳定性的训练样本和已计算暂态稳定性的测试样本;通过计算训练样本的不确定指标,选择不确定指标高的训练样本进行完整时域仿真,计得到暂态稳定性结果。本发明方法减少了时域仿真的计算时间,减少了模型再训练时间,从而减少了暂态稳定预测模型的在线更新时间,更新得到的暂态稳定预测模型仍能保证较高的准确率,具有重要的实用价值。
搜索关键词: 一种 电力系统 稳定 预测 模型 更新 方法
【主权项】:
1.一种电力系统暂态稳定预测模型的更新方法,其特征在于该方法包括以下步骤:(1)对一个具有N台发电机的电力系统,根据电力系统历史运行情况和运行人员经验,得到由z种场景构成的初始场景集S0,根据S0和深度神经网络模型的构建方法,得到用于在线暂态稳定预测的初始深度神经网络模型C,统计初始场景集S0中各场景的运行工况和预想故障情况,具体包括以下步骤:(1‑1)判断当前初始场景集S0是否为空集,如果S0不是空集,则转入步骤(1‑2),如果S0是空集,则根据电力系统历史运行情况和运行人员经验,得到由z种场景构成的初始场景集S0其中,Ok表示电力系统在场景k中线路和负荷的接入情况,Fk表示场景k中考虑的预想故障,通常包括故障位置、故障类型和故障切除时间,PGi表示电力系统中第i台发电机的有功功率,VGi表示第i台发电机的机端电压幅值,PLoadj表示电力系统中第j个负荷节点的有功负荷,QLoadj表示第j个负荷节点的无功负荷,Xk=(xk,1,xk,2,…,xk,f)表示场景k中采集的f个输入特征,yk=(y1k,y2k)表示场景k的暂态稳定性,设定yk=(0,1)表示场景k中电力系统能够保持暂态稳定,yk=(1,0)表示场景k中电力系统将暂态失稳;(1‑2)判断深度神经网络模型C是否存在,如果C存在,则转入步骤(1‑3),如果C不存在,则利用深度神经网络构建步骤(1‑1)中初始场景集S0的输入特征Xk与yk的映射关系,得到用于在线暂态稳定预测的初始深度神经网络模型C,其中深度神经网络模型可以使用深度卷积神经网络、深度置信神经网络、深度残差网络等,每一层的参数由人为设定,最终模型C的输出向量为且满足P(y1k=1|Xk)+P(y2k=1|Xk)=1,其中,P(y1k=1|Xk)表示当输入为Xk而输出为y1k=1的概率,P(y2k=1|Xk)表示当输入为Xk而输出为y2k=1的概率,对两个概率的大小进行比较,若P(y1k=1|Xk)≥P(y2k=1|Xk),则判断场景k中电力系统将失稳,若P(y1k=1|Xk)<P(y2k=1|Xk),则判断场景k中电力系统能够保持稳定;(1‑3)对步骤(1‑1)得到的初始场景集S0中的Ok、Fk、PGi、VGi、PLoadj和QLoadj进行统计,得到Ok、Fk、PGi、VGi、PLoadj和QLoadj的分布情况,具体包括以下步骤:(1‑3‑1)对S0中所有场景中线路和负荷的接入情况进行两两比较,若两个场景中所有线路和负荷的接入情况完全相同,则认为是同一种线路和负荷接入方式,否则认为是两种线路和负荷接入方式,最终,得到包含u种线路和负荷接入方式的集合o_set={o(1),o(2),…,o(u)},其中,o(a)表示集合o_set中的第a种线路和负荷接入方式,a=1,…,u;(1‑3‑2)对S0中采用第a种线路和负荷接入情况o(a)涵盖的所有场景下的预想故障进行两两比较,若两种场景对应的预想故障类型、故障位置和故障切除时间完全相同,则认为是同一种预想故障,若两种场景对应的预想故障类型、故障位置和故障切除时间不完全相同,则认为是两种不同的预想故障,最终,第a种线路和负荷接入情况o(a)对应的所有场景共包含n(a)种预想故障,得到由n(a)种预想故障构成的集合f_set={f(a,1),f(a,2),…,f(a,n(a))},其中,f(a,b)表示第a种线路和负荷接入情况o(a)对应的第b种预想故障,b=1,…,n(a);(1‑3‑3)对步骤(1‑3‑2)中第a种线路和负荷接入情况o(a)对应第b种预想故障f(a,b),b=1,…,n(a),分别统计得到f(a,b)涵盖的所有场景中第i台发电机的有功功率PGi和机端电压幅值VGi的上限值和下限值和第j个负荷节点的有功负荷PLoadj和无功负荷QLoadj的上限值和下限值:其中,M(a)为电力系统在第a种线路和负荷接入情况下的负荷节点数,PGi(a,b)为f(a,b)涵盖的所有场景中第i台发电机有功功率的下限值,为f(a,b)涵盖的所有场景中第i台发电机有功功率的上限值,VGi(a,b)为f(a,b)涵盖的所有场景中第i台发电机机端电压幅值的下限值,为f(a,b)涵盖的所有场景中第i台发电机机端电压幅值的上限值,PLoadj(a,b)为f(a,b)涵盖的所有场景中第j个负荷节点有功负荷的下限值,为场景f(a,b)中第j个负荷节点有功负荷的上限值,QLoadj(a,b)为f(a,b)涵盖的所有场景中第j个负荷节点无功负荷的下限值,为f(a,b)涵盖的所有场景中第j个负荷节点无功负荷的上限值;(2)设定暂态稳定预测模型的更新周期为T1,根据电力系统控制中心对未来T1到2T1时间内的发电预测信息、负荷预测信息、线路投切计划和潮流计算结果,得到未来T1到2T1时间内需要考虑的p+q种新场景S1,其中有p种场景包含在初始场景集S0中,构成新增场景集N0,有q种场景未包含在初始场景集S0中,构成新增场景集N1,p+q的值由人为设定,具体包括以下步骤:(2‑1)根据当前时间判断下一个更新周期是否到来,如果下一个更新周期已经到来,则进行步骤(2‑2),如果下一个更新周期还未到来,则返回步骤(2‑1);(2‑2)根据电力系统控制中心对未来T1到2T1时间内的发电预测信息、负荷预测信息、线路投切计划和潮流计算结果,得到电力系统未来T1到2T1时间内的发电预测信息、负荷预测信息、线路投切计划和潮流计算,得到未来T1到2T1时间内需要考虑的p+q种新场景构成的新场景集S1其中,上标new表示与初始场景集S0相区别的新场景,上标l=1,…,p+q是新场景编号,表示新场景集S1中的第l个新场景,p+q的值为新场景集S1的总场景数,其值由人为设定,Onewl表示电力系统在新场景l中线路和负荷的接入情况,Fnewl表示新场景l中考虑的预想故障,PGinewl表示电力系统在新场景l中第i台发电机的有功功率,VGinewl表示电力系统在新场景l中第i台发电机的机端电压幅值,PLoadjnewl表示电力系统在新场景l中第j个负荷节点的有功负荷,QLoadjnewl表示电力系统在新场景l中第j个负荷节点的无功负荷,Xnewl=[xnewl,1,xnewl,2,…,xnewl,f]表示电力系统在新场景l中采集的f个输入特征,ynewl表示电力系统在新场景l的暂态稳定性,设定ynewk=(0,1)表示新场景l中电力系统能够保持暂态稳定,ynewl=(1,0)表示新场景l中电力系统将暂态失稳;(2‑3)将新场景集S1中各个场景与初始场景集S0的所有场景进行对比,根据对比结果将S1中的场景划分到新增场景集N1和新增场景集N2,具体包括以下步骤:(2‑3‑1)将新场景编号l初始化为1;(2‑3‑2)将新场景编号l与p+q的大小进行对比,若l≤p+q,则进行步骤(2‑3‑3),若l>p+q,则转到步骤(3);(2‑3‑3)将新场景S1中第l个新场景对应的线路和负荷接入情况Onewl与步骤(1‑3‑1)得到的集合o_set进行对比,若Onewl与o_set中第t种线路和负荷接入情况o(t)相同,其中t为1到u之间的整数,则进行步骤(2‑3‑4),若Onewl不属于集合o_set,则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1,并转到步骤(2‑3‑9);(2‑3‑4)将新场景S1中第l个新场景对应的预想故障Fnewl与步骤(1‑3‑2)中第t种线路和负荷接入情况o(t)对应的所有n(t)种预想故障f(t,1),f(t,2),…,f(t,n(t))一一进行对比,若预想故障Fnewl与o(t)对应的第r种预想故障f(t,r)相同,r为1到n(t)之间的整数,则进行步骤(2‑3‑5),若预想故障Fnewl与o(t)对应的所有n(t)种预想故障都不相同,则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1,并转到步骤(2‑3‑9);(2‑3‑5)将新场景S1中的第l个新场景对应的第i台发电机的有功功率PGinewl与PGi(t,r)和的大小进行比较,其中PGi(t,r)为f(t,r)涵盖的所有场景中第i台发电机有功功率的下限值,为f(t,r)涵盖的所有场景中第i台发电机有功功率的上限值,若满足:则进行步骤(2‑3‑6),若不满足:则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1,并转到步骤(2‑3‑9);(2‑3‑6)将新场景S1中的第l个新场景对应的第i台发电机的机端电压幅值VGinewl与VGi(t,r)和的大小进行比较,其中VGi(t,r)为f(t,r)涵盖的所有场景中第i台发电机机端电压幅值的下限值,为f(t,r)涵盖的所有场景中第i台发电机机端电压幅值的上限值,若满足:则进行步骤(2‑3‑7),若不满足:则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1,并转到步骤(2‑3‑9);(2‑3‑7)将新场景S1中的第l个新场景对应的第j个负荷节点的有功负荷PLoadjnewlPLoadj(t,r)和的大小进行比较,其中PLoadj(t,r)为f(t,r)涵盖的所有场景中第j个负荷节点的有功负荷的下限值,为f(t,r)涵盖的所有场景中第j个负荷节点的有功负荷的上限值,若满足:则进行步骤(2‑3‑8),若不满足:则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1,并转到步骤(2‑3‑9);(2‑3‑8)将新场景S1中的第l个新场景对应的第j个负荷节点的无功负荷QLoadjnewl与QLoadj(t,r)和的大小进行比较,其中QLoadj(t,r)为f(t,r)涵盖的所有场景中第j个负荷节点的无功负荷的下限值,为f(t,r)涵盖的所有场景中第j个负荷节点的无功负荷的上限值,若满足:则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N0,,并转到步骤(2‑3‑9),若不满足:则将第l个新场景对应的线路和负荷接入情况Onewl、预想故障Fnewl、第i台发电机的有功功率PGinewl、第i台发电机的机端电压幅值VGinewl、第j个负荷节点的有功负荷PLoadjnewl、第j个负荷节点的无功负荷QLoadjnewl和输入特征Xnewl放入新增场景集N1中,并转到步骤(2‑3‑9);(2‑3‑9)令l:=l+1,返回步骤(2‑3‑2);(3)根据新增场景集N0、N1和初始深度神经网络模型C,进行时域仿真计算和模型微调,更新得到最终的暂态稳定预测模型,具体包括以下步骤:(3‑1)对新增场景集N1包含的新场景数q进行判断,若q=0,则无需对模型C更新,返回步骤(2);若q≠0,从N0和N1中分别随机抽取h个样本作为测试样本集Test,剩余p+q‑2h个样本构成样本集D1,利用数值计算方法对Test中的所有场景进行时域仿真,得到Test中所有场景的暂态稳定标签;(3‑2)利用深度神经网络模型C对Test集合中h个测试样本进行预测,根据预测结果迭代进行时域仿真计算和模型训练,更新得到最终的暂态稳定预测模型,具体包括以下步骤:(3‑2‑1)设定迭代次数o初始化为0,样本集D2初始化为空集,设定每次抽取u个新样本,设定预测准确率阈值Aset,迭代终止次数(3‑2‑2)利用深度神经网络模型C对测试集Test中h个测试样本进行预测,得到预测准确率Apred,将Apred的值与Aset进行比较,若Apred≥Aset,则当前的深度神经网络模型C就作为更新后的电力系统暂态稳定预测模型,并将样本集D2与S0的所有场景取并集,作为新的初始场景集S0,若Apred<Aset,则转入步骤(3‑2‑3);(3‑2‑3)将o的值与oset进行比较,若o≥oset,则当前的深度神经网络模型C就作为更新后的电力系统暂态稳定预测模型,并将样本集D2与S0的所有场景取并集,作为新的初始场景集S0,若o<oset,则转入步骤(3‑2‑4);(3‑2‑4)令o:=o+1,将样本集D1中所有样本的输入特征Xnewg作为模型C的输入,得到D1中所有样本Xnewg在模型C的输出P(y2newg=1|Xnewg)),其中g=1,…,p+q‑2h‑(u×o),P(y1newg=1|Xnewg)表示当输入为Xnewg而输出y1newg=1的概率,P(y2newg=1|Xnewg)表示当输入为Xnewg而输出y2newg=1的概率,然后计算D1中所有样本的不确定性指标enewgenewg=min{P(y1newg=1|Xnewg),P(y2newg=1|Xnewg)}其中min{·}表示取最小值;(3‑2‑5)将D1中所有样本的不确定性指标enewg从大到小排列,取enewg的值排在前u的样本,利用数值计算方法对u个样本进行时域仿真,得到u个样本的暂态稳定类别标签ynewg;(3‑2‑6)将步骤(3‑2‑5)中的u个样本加入至训练集D2,并从D1中移除已经标记的u个样本,利用Adam算法和D2中的样本对深度神经网络模型C进行微调,迭代m次,得到新的深度神经网络模型C,其中,m的值由人为设定;(3‑2‑7)转入步骤(3‑2‑2)。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910321444.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top