[发明专利]基于多尺度上下文聚合网络的低照度成像算法及装置有效
申请号: | 201910322278.3 | 申请日: | 2019-04-22 |
公开(公告)号: | CN110111269B | 公开(公告)日: | 2023-06-06 |
发明(设计)人: | 张斯尧;谢喜林;王思远;黄晋;蒋杰;张诚 | 申请(专利权)人: | 深圳久凌软件技术有限公司 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 长沙德权知识产权代理事务所(普通合伙) 43229 | 代理人: | 徐仰贵 |
地址: | 518000 广东省深圳市福田区梅林街道*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多尺度上下文聚合网络的低照度成像算法及装置,该算法包括:对原始图像进行打包变换像素通道的预处理;步骤102:利用步骤101中预处理的图像进行CAN网络的数据训练;步骤103:通过训练后的CAN网络对采集到的低照度图像进行处理,并对处理后的图像进行快速宽动态处理,并输出最终图像,其中所述快速宽动态处理步骤包括:将一帧视频图像分为高光部分和低光部分,对高光部分和低光部分分别进行调整。本发明提出的算法效率较高,能够提高信噪比,增强显示图像细节,很好地还原低照度成像图像的细节部分,提高低照度图像亮度,使视频图像能在低照度环境下快速清晰成像。 | ||
搜索关键词: | 基于 尺度 上下文 聚合 网络 照度 成像 算法 装置 | ||
【主权项】:
1.一种基于多尺度上下文聚合网络的低照度成像算法,其特征在于:包括:步骤101:对原始图像进行打包变换像素通道的预处理;步骤102:利用步骤101中预处理的图像进行CAN网络的数据训练;步骤103:通过训练后的CAN网络对采集到的低照度图像进行处理,并对处理后的图像进行快速宽动态处理,并输出最终图像,其中所述快速宽动态处理步骤包括:将一帧视频图像分为高光部分和低光部分,对高光部分和低光部分分别进行调整,对低光部分进行调整采用的算法公式为:
其中,Y2为低光补偿部分的值,k为预设的低光补偿参数,I为输入的视频图像的像素值,Y1为预处理部分输入的视频图像的修正值;对高光部分进行调整采用的算法公式为:
其中,α为高光部分调节参数,参数范围一般为0.7~1,Max a为视频图像的像素最大值;经过校正后输出的宽动态视频图像为:
其中,Y为宽动态算法处理后最终系统输出的视频图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳久凌软件技术有限公司,未经深圳久凌软件技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910322278.3/,转载请声明来源钻瓜专利网。