[发明专利]一种深度学习训练样本优化方法有效
申请号: | 201910324389.8 | 申请日: | 2019-04-22 |
公开(公告)号: | CN110070548B | 公开(公告)日: | 2020-11-24 |
发明(设计)人: | 杨勇;黄淑英 | 申请(专利权)人: | 杨勇 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06K9/62;G06T5/00;G06T7/13;G06T7/136 |
代理公司: | 北京盛询知识产权代理有限公司 11901 | 代理人: | 陈巍 |
地址: | 330036 江西*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种深度学习训练样本优化方法,包括以下步骤:绘制出原始图像的轮廓元素标注信息、将原始图像的轮廓元素标注信息进行剥离、生成单一轮廓元素原始子图像和重叠轮廓元素原始子图像、图像增强处理、边缘检测处理,得到边缘单一轮廓元素原始子图像和边缘重叠轮廓元素原始子图像以及池化处理和图像分割处理;本发明通过进行图像增强处理可以保证原始图像具有较高的图像质量,为后序优化处理提高稳定的基础,通过对图像增强处理后图像分别进行边缘检测处理,能消除深度学习训练样本的原始图像中的样本元素边界误差,可以提高图像质量以及训练样本的生成效率,有效缩短深度学习训练样本的训练时间。 | ||
搜索关键词: | 一种 深度 学习 训练 样本 优化 方法 | ||
【主权项】:
1.一种深度学习训练样本优化方法,其特征在于,包括以下步骤:步骤一:获取两组相同的深度学习训练样本的原始图像,然后将其中一组深度学习训练样本的原始图像利用findContours函数寻找出原始图像中的轮廓,然后根据寻找出的原始图像中的轮廓,利用drawContours函数绘制出原始图像的轮廓元素标注信息;步骤二:将原始图像的轮廓元素标注信息进行剥离,剥离出原始图像的单一轮廓元素标注信息和原始图像的重叠轮廓元素标注信息;步骤三:根据训练样本的原始图像的单一轮廓元素标注信息和训练样本的原始图像的重叠轮廓元素标注信息,进行逆向处理,生成基于原始图像的轮廓元素标注信息的单一轮廓元素原始子图像和重叠轮廓元素原始子图像;步骤四:对单一轮廓元素原始子图像和重叠轮廓元素原始子图像分别进行图像增强处理;步骤五:对图像增强处理后的单一轮廓元素原始子图像和重叠轮廓元素原始子图像分别进行边缘检测处理,标识出单一轮廓元素原始子图像和重叠轮廓元素原始子图像中亮度变化明显的像素点,分别得到边缘单一轮廓元素原始子图像和边缘重叠轮廓元素原始子图像;步骤六:对边缘单一轮廓元素原始子图像进行池化处理,对边缘重叠轮廓元素原始子图像进行图像分割处理,分别得到优化后的边缘单一轮廓元素原始子图像和优化后的单一轮廓元素原始子图像边缘重叠轮廓元素原始子图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杨勇,未经杨勇许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910324389.8/,转载请声明来源钻瓜专利网。