[发明专利]一种图像数据多标签分类方法有效
申请号: | 201910339785.8 | 申请日: | 2019-04-25 |
公开(公告)号: | CN110210515B | 公开(公告)日: | 2021-04-20 |
发明(设计)人: | 陈刚;谌晨;王皓波;胡天磊;陈珂;寿黎但 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林超 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种图像数据多标签分类方法。对输入图像进行分解,利用神经网络提取特征的高次相关性,对标签数据进行分解,利用神经网络提取标签的高次相关性,采用包含多层全连接层的神经网络将输入图像的特征码从输入空间解码到标签空间;构建损失函数,初始化训练参数,采用随机梯度下降方法最小化最终损失函数为目标,训练求解获得最优的训练参数;然后针对待测试的图像数据输入到训练后的模型中进行预测,输出获得标签结果,实现多标签分类。本发明解决了图像数据前人工作不能同时提取标签的二次相关性和多次相关性的问题,降低了由于图像数据太过稀疏带来的预测困难,提高了多标签分类的准确性。 | ||
搜索关键词: | 一种 图像 数据 标签 分类 方法 | ||
【主权项】:
1.一种图像数据多标签分类方法,其特征在于:本方法的步骤如下:步骤一是对输入图像进行分解:对输入图像处理获得图像特征集合,建立输入空间,再将图像特征集合中每个图像特征向量进行两两乘积并求和得到图像分解向量;步骤二是利用神经网络提取特征的高次相关性:将步骤一得到的图像分解向量输入到包含多层全连接层的神经网络中得到输入图像的特征码;步骤三是对标签数据进行分解:对已知的标签数据处理得到标签特征集合,建立标签空间,再将标签特征集合中每个标签特征向量进行两两乘积并求和得到标签分解向量;步骤四是利用神经网络提取标签的高次相关性:将步骤三得到的标签分解向量输入到包含多层全连接层的神经网络中得到标签数据的特征码;步骤五是解码:采用包含多层全连接层的神经网络将输入图像的特征码从输入空间解码到标签空间;步骤六是检测:构建损失函数,初始化训练参数,采用随机梯度下降方法最小化最终损失函数为目标,训练求解获得最优的训练参数;然后针对待测试的图像数据输入到训练后的模型中进行预测,输出获得标签结果,实现多标签分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910339785.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置