[发明专利]一种基于机器学习自动设计放射治疗方案的系统有效
申请号: | 201910340661.1 | 申请日: | 2019-04-25 |
公开(公告)号: | CN110211664B | 公开(公告)日: | 2022-11-04 |
发明(设计)人: | 曹瑞芬;仲红 | 申请(专利权)人: | 安徽大学 |
主分类号: | G16H20/40 | 分类号: | G16H20/40;G16H50/20;G06N20/00;G06N3/04 |
代理公司: | 苏州携智汇佳专利代理事务所(普通合伙) 32278 | 代理人: | 温明霞 |
地址: | 230601 安徽省*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于机器学习自动设计放射治疗方案的系统,包括输入单元、射野参数预测单元、优化目标及约束条件预测单元、以及逆向计划优化单元,其中,输入单元用于获取病人原始图像及分割后的感兴趣区域信息;射野参数预测单元用于构建基于神经网络的学习模型,自动预测出射野参数;优化目标及约束条件预测单元用于构建基于神经网络的剂量分布预测模型,并且将预测的期望剂量分布自动转化成逆向优化需要的目标函数及约束条件;以及逆向计划优化单元用于根据目标函数、约束设置和射野参数采用优化方法优化得到每个射野方向对应的子野及其权重,完成计划设计。本系统实现了计划的自动设计,可以大幅减轻计划设计者的工作量,提高工作效率。 | ||
搜索关键词: | 一种 基于 机器 学习 自动 设计 放射 治疗 方案 系统 | ||
【主权项】:
1.一种基于机器学习自动设计放射治疗方案的系统,其特征在于,包括输入单元、射野参数预测单元、优化目标及约束条件预测单元、逆向计划优化单元,其中所述输入单元用于获取病人原始图像及分割后的感兴趣区域信息,感兴趣区域包括肿瘤靶区、危及器官及医生勾画的其它感兴趣的区域;所述射野参数预测单元用于构建基于神经网络的学习模型,该学习模型用于根据输入单元导入的数据预测出射野方向,并且根据射野方向计算出射野参数中的射野大小和射野形状;所述优化目标及约束条件预测单元用于构建基于神经网络的剂量分布预测模型,并且将所述剂量分布预测模型预测的期望剂量分布自动转化成逆向优化需要的目标函数及约束条件;以及逆向计划优化单元用于根据优化目标及约束条件预测单元提供的目标函数、约束设置和所述射野参数预测单元提供的射野参数采用优化方法优化得到每个射野方向对应的子野及其权重,完成计划设计。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910340661.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于云计算的运动检测管理系统
- 下一篇:钬激光治疗系统