[发明专利]基于词向量和句法特征的评论分析方法及可视化交互界面有效

专利信息
申请号: 201910343337.5 申请日: 2019-04-26
公开(公告)号: CN110175325B 公开(公告)日: 2023-07-11
发明(设计)人: 吕奇;沈楠楠;胡新春;陈可佳 申请(专利权)人: 南京邮电大学
主分类号: G06F40/242 分类号: G06F40/242;G06F16/9532;G06F40/30;G06F40/284;G06Q30/0601
代理公司: 南京苏科专利代理有限责任公司 32102 代理人: 陈栋智
地址: 225000 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了数据分析领域内的一种基于词向量和句法特征的评论分析方法,包括:获取电商网站商品页面评论数据;将获取的目标数据集进行预处理;提取Hownet和NTU提供的褒贬词集组成基础情感词典;将所得到的经过预处理的数据集合通过Word2Vec工具进行词向量训练;使用语义相似度矩阵建立概率转移矩阵;将获取的商品评论文本,进行基于核心句规则的处理;将所得到的去除冗余的文本进行预处理;对所得依存关系对通过词性提取商品属性,否定词,程度词,情感词评价搭配对;将所得评价搭配对结合情感词典,对评价对象进行褒贬值计算、优劣排序,最终通过可视化交互界面实现,实现对商品评论数据进行准确、实时、自动、便利的处理与分析,可用于电商平台中。
搜索关键词: 基于 向量 句法 特征 评论 分析 方法 可视化 交互 界面
【主权项】:
1.一种基于词向量和句法特征的评论分析方法,其特征在于,包括以下步骤:1)获取电商网站商品页面评论数据;2)将获取的目标数据集进行预处理,并构建候选情感词集;3)提取Hownet和NTU提供的褒贬词集组成基础情感词典;4)将所得到的经过预处理的数据集合通过Word2Vec工具进行词向量训练,得到词向量并生成语义相似度矩阵;5)使用语义相似度矩阵建立概率转移矩阵,并结合种子词集通过LPA标签传播算法且经过基础情感词典检验后生成最终的情感词典;6)将获取的商品评论文本,进行基于核心句规则的处理,得到去除冗余的评论文本;7)将所得到的去除冗余的文本进行预处理,对得到的分词数据集合基于依存关系、句法特征形成依存关系树,生成SBV、VOB、ATT、CMP、COO依存关系对;8)对所得依存关系对通过词性提取<商品属性,否定词,程度词,情感词>评价搭配对;9)将所得评价搭配对结合情感词典,对评价对象进行褒贬值计算、优劣排序,最终通过可视化交互界面实现。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910343337.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top