[发明专利]一种基于最大二乘损失的无监督域适应语义分割方法有效

专利信息
申请号: 201910353614.0 申请日: 2019-04-29
公开(公告)号: CN110222690B 公开(公告)日: 2021-08-10
发明(设计)人: 陈铭浩;蔡登;薛弘扬 申请(专利权)人: 浙江大学
主分类号: G06K9/34 分类号: G06K9/34;G06K9/62
代理公司: 杭州天勤知识产权代理有限公司 33224 代理人: 胡红娟
地址: 310013 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于最大二乘损失的无监督域适应语义分割方法,包括:(1)在源域上预训练语义分割模型,所述语义分割模型基于ResNet网络;(2)同时提取语义分割模型中第四层的特征,加入一个额外的分类网络,对该网络分支进行同样的预训练;(3)在源域上有监督地训练语义分割模型,同时在目标域上使用最大二乘损失无监督地训练语义分割模型;(4)在目标域,使用ResNet网络最后一层的输出作为伪标签,无监督地训练第四层特征;(5)模型训练完毕,在目标域上对图片输出它的语义分割图。利用本发明,使无监督域适应的语义分割效果中,能够对难训练样本和小物体类别得到更多的训练,提高最后目标域上的语义分割质量。
搜索关键词: 一种 基于 大二 损失 监督 适应 语义 分割 方法
【主权项】:
1.一种基于最大二乘损失的无监督域适应语义分割方法,其特征在于,包括:(1)在源域上预训练语义分割模型,所述语义分割模型基于ResNet网络;(2)同时提取语义分割模型中第四层的特征,加入一个额外的分类网络,对该网络分支进行同样的预训练;(3)在源域上有监督地训练语义分割模型,同时在目标域上使用最大二乘损失无监督地训练语义分割模型;(4)在目标域,使用ResNet网络最后一层的输出作为伪标签,无监督地训练第四层特征;(5)模型训练完毕,在目标域上对图片输出它的语义分割图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910353614.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top