[发明专利]一种基于最大二乘损失的无监督域适应语义分割方法有效
申请号: | 201910353614.0 | 申请日: | 2019-04-29 |
公开(公告)号: | CN110222690B | 公开(公告)日: | 2021-08-10 |
发明(设计)人: | 陈铭浩;蔡登;薛弘扬 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/34 | 分类号: | G06K9/34;G06K9/62 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 胡红娟 |
地址: | 310013 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于最大二乘损失的无监督域适应语义分割方法,包括:(1)在源域上预训练语义分割模型,所述语义分割模型基于ResNet网络;(2)同时提取语义分割模型中第四层的特征,加入一个额外的分类网络,对该网络分支进行同样的预训练;(3)在源域上有监督地训练语义分割模型,同时在目标域上使用最大二乘损失无监督地训练语义分割模型;(4)在目标域,使用ResNet网络最后一层的输出作为伪标签,无监督地训练第四层特征;(5)模型训练完毕,在目标域上对图片输出它的语义分割图。利用本发明,使无监督域适应的语义分割效果中,能够对难训练样本和小物体类别得到更多的训练,提高最后目标域上的语义分割质量。 | ||
搜索关键词: | 一种 基于 大二 损失 监督 适应 语义 分割 方法 | ||
【主权项】:
1.一种基于最大二乘损失的无监督域适应语义分割方法,其特征在于,包括:(1)在源域上预训练语义分割模型,所述语义分割模型基于ResNet网络;(2)同时提取语义分割模型中第四层的特征,加入一个额外的分类网络,对该网络分支进行同样的预训练;(3)在源域上有监督地训练语义分割模型,同时在目标域上使用最大二乘损失无监督地训练语义分割模型;(4)在目标域,使用ResNet网络最后一层的输出作为伪标签,无监督地训练第四层特征;(5)模型训练完毕,在目标域上对图片输出它的语义分割图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910353614.0/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于深度学习的西洋银器戳记识别方法
- 下一篇:产品标签识别系统及方法