[发明专利]提取降维特征的方法和装置有效
申请号: | 201910380805.6 | 申请日: | 2019-05-08 |
公开(公告)号: | CN110210518B | 公开(公告)日: | 2021-05-28 |
发明(设计)人: | 高树立 | 申请(专利权)人: | 北京互金新融科技有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京康信知识产权代理有限责任公司 11240 | 代理人: | 赵囡囡 |
地址: | 100080 北京市海淀*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种提取降维特征的方法和装置。该方法包括:从训练数据中提取预设场景下的特征重要性数值,其中,训练数据为有标签的结构化数据,特征重要性数值用于指示该特征对标签中标识的结果的影响程度;将特征重要性数值进行归一化处理得到特征重要性向量;将特征重要性向量传递至稀疏自编码网络中,以影响神经元权重;将无标签的结构化数据输入进行稀疏自编码网络中,以对无标签的结构化数据进行降维处理。通过本申请,解决了相关技术中有标签数据很难获得,而从无标签数据中提取有效的信息来提升该场景的模型预测性能的现有方案均无法满足当下需求的技术问题。 | ||
搜索关键词: | 提取 特征 方法 装置 | ||
【主权项】:
1.一种提取降维特征的方法,其特征在于,包括:从训练数据中提取预设场景下的特征重要性数值,其中,所述训练数据为有标签的结构化数据,所述特征重要性数值用于指示该特征对所述标签中标识的结果的影响程度;将所述特征重要性数值进行归一化处理得到特征重要性向量;将所述特征重要性向量传递至稀疏自编码网络中,以影响神经元权重;将无标签的结构化数据输入进行所述稀疏自编码网络中,以对所述无标签的结构化数据进行降维处理。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京互金新融科技有限公司,未经北京互金新融科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910380805.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于密度的多层分步聚类方法
- 下一篇:分类方法、计算机设备和存储介质