[发明专利]基于双流卷积神经网络的双目图像快速目标检测方法有效
申请号: | 201910387460.7 | 申请日: | 2019-05-10 |
公开(公告)号: | CN110110793B | 公开(公告)日: | 2021-10-26 |
发明(设计)人: | 赖剑煌;陆瑞智;谢晓华 | 申请(专利权)人: | 中山大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 刘巧霞 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于双流卷积神经网络的双目图像快速目标检测方法,包括步骤:对双目摄像头进行标定,得到标定参数;根据标定参数对训练图像进行校正,训练隐式深度语义挖掘网络用于在双目图像上隐式地学习深度语义信息,训练多模态特征混合检测网络;将隐式深度语义挖掘网络输出的特征与多模态特征混合检测网络的特征通过通道串联的方式结合在一起,便组成双流卷积神经网络,利用训练图像训练双流卷积神经网络;通过双目摄像头获取测试图像,并对其进行校正,将校正后的图像输入到上述双流卷积神经网络中进行目标检测,得到目标检测结果。本发明可以综合利用RGB和深度语义信息的互补性,具有效率高、目标检测结果更准确的优点。 | ||
搜索关键词: | 基于 双流 卷积 神经网络 双目 图像 快速 目标 检测 方法 | ||
【主权项】:
1.基于双流卷积神经网络的双目图像快速目标检测方法,其特征在于,包括步骤:(1)对双目摄像头进行标定,得到标定参数;(2)根据标定参数对训练图像进行校正,训练隐式深度语义挖掘网络用于在双目图像上隐式地学习深度语义信息,训练多模态特征混合检测网络;将隐式深度语义挖掘网络输出的特征与多模态特征混合检测网络的特征通过通道串联的方式结合在一起,便组成双流卷积神经网络,利用训练图像训练双流卷积神经网络;(3)通过双目摄像头获取测试图像,并对其进行校正,将校正后的图像输入到上述双流卷积神经网络中进行目标检测,得到目标检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910387460.7/,转载请声明来源钻瓜专利网。