[发明专利]汽车爆胎安全稳定控制方法有效
申请号: | 201910388016.7 | 申请日: | 2019-05-10 |
公开(公告)号: | CN110481541B | 公开(公告)日: | 2021-04-20 |
发明(设计)人: | 吕杉;吕柏言 | 申请(专利权)人: | 吕杉;吕柏言 |
主分类号: | B60W30/02 | 分类号: | B60W30/02;B60W30/182 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610051 四川省成都市成华*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明是一种“汽车爆胎安全稳定控制方法”,用于有人和无人驾驶车辆,基于车辆制动、驱动、转向、悬架系统,属汽车爆胎安全领域。本方法确立了胎压检测、状态胎压及转向力学状态模式的爆胎判定,采用汽车爆胎安全稳定控制模式、模型和算法、控制结构和流程;基于爆胎状态点,通过爆胎控制进入和退出、正常与爆胎控制模式转换,协调进行车辆制动、驱动、转向、转向轮回转力、悬架平衡控制,实现真实或非真实爆胎过程重叠的爆胎控制;在爆胎过程状态、爆胎轮和车辆运动状态急剧改变条件下,突破了车轮和车辆爆胎严重失稳、爆胎极端状态难以控制等重要技术屏障,用以解决目前这一长期困扰汽车爆胎安全的重大课题。 | ||
搜索关键词: | 汽车 安全 稳定 控制 方法 | ||
【主权项】:
1.一种汽车爆胎安全稳定控制方法,一种基于车辆制动、驱动、转向和悬架系统,一种通过制动、驱动、转向、发动机控制或和悬架控制,实现爆胎车辆制动、驱动、转向、发动机控制或和悬架独立协调控制的方法,本方法采用车辆爆胎安全稳定控制方法、模式、模型和算法;本方法设置信息单元、爆胎控制器及执行单元,覆盖化学能驱动或电力驱动车辆、有人或无人驾驶车辆;有人驾驶车辆设置爆胎主控器,无人驾驶车辆设置中央主控器;爆胎控制是一种车轮和车辆稳态减速控制,一种车辆方向、车辆姿态、车道保持、路径跟踪、防撞及车身平衡的稳定性控制,本方法设置制动、驱动、转向、发动机或和悬架爆胎控制器,基于该控制器实现爆胎制动、转向、或者和悬架的独立及协调控制;本方法的特征是:爆胎控制采用特征胎压、状态胎压的爆胎模式识别方式,基于爆胎模式识别,建立爆胎判定模式、模型,实现爆胎判;爆胎定义:无论车轮是否真实爆胎,只要车轮结构力学及运动状态参数、转向力学状态参数、车辆行驶状态参数、爆胎控制参数定性及定量化表征的车轮车辆“非正常状态”出现,基于爆胎模式识别,建立爆胎判定模型,通过判定模型定性及定量化确定的爆胎状态达到设定条件,则判定为爆胎,其中设定条件同样包括定性及定量条件;根据爆胎的定义,本方法所述爆胎状态特征与车轮车辆正常和爆胎工况下的非正常状态特征相一致,同时与真实爆胎后车轮、转向、整车产生的状态特征相一致;所谓“状态特征相一致”是指:二者基本相同或等效;定义特征胎压和状态胎压:状态胎压包括特征胎压,具有特征胎压的组合特性;特征胎压和状态胎压是动态的,按爆胎状态和爆胎控制过程,将其分为两个阶段;第一阶段:爆胎状态模式识别的判定阶段;基于正常工况的车辆非正常状态,按车轮、转向、整车运动、或和力学状态及其参数以及爆胎控制参数,确定爆胎模式识别、爆胎判定及爆胎控制进入或退出阶段;第二阶段,爆胎控制识别的判定阶段:基于爆胎控制,由其控制状态及其参数,确定的模式识别,爆胎判定,控制持续或和控制退出阶段;本方法采用传感器检测胎压或状态胎压的爆胎模式识别;状态胎压的爆胎模式识别是以表征车轮运动状态、转向力学状态、整车状态参数建立的爆胎识别模式;状态胎压pre不是车轮的真实胎压,但状态胎压表征的车轮、转向、整车的爆胎状态特征与正常和爆胎工况下车轮车辆的非正常状态特征相一致,同时与真实爆胎后车轮、转向、整车产生的状态特征相一致;所谓“状态特征相一致”是指:二者基本相同或等效,其状态包括车轮运动、车辆转向、整车姿态、车辆车道保持和路径跟踪状态;各状态由参数的定量化或和定性化表征;传感器检测胎压或状态胎压的爆胎判定为一种胎压的过程判定,基于爆胎识别模式的定性条件或定量模型进行爆胎判定;设定爆胎判定周期Hv,在其周期Hv的逻辑循环中,实现其爆胎判定;/n①、爆胎状态阶段的爆胎模式识别;定义爆胎状态模式识别及其判定:按车轮、转向整车运动力学状态及其参数,确定的爆胎及正常工况下车辆各类非正常状态的识别称爆胎模式识别;/ni、车轮运动状态特征胎压xb的爆胎模式识别,简称特征胎压模式识别;该模式识别由车辆车轮副二轮非等效、等效相对参数Dk、De的比较作出;Dk和De此构成为通过车轮运动状态进行车辆爆胎识别的基础;定义车辆二轮相对参数Db:二轮采用的相同参数;定义二轮非等效相对参数Dk:未进行等效规定的任意二轮相对参数;定义二轮等效相对参数:二轮所取非等效相对参数,在同一参数En取值相等或等效相等的条件下,通过所建转换模型和算法,将表征车辆二轮运动状态的非等效相对参数Dk转换为同一参数En取值相等或等效相等的等效相对参数De;其中Dk非等效相对参数包括车轮制动力、转动角速度、滑移率参数;同一参数En包括车轮制动力或驱动力、转动惯量、摩擦系数、载荷、车轮侧偏角、转向盘转角、车辆内外轮转弯半径;等效相对参数De包括车轮制动力、转动角速度、滑移率;非等效相对参数Dk通过这种所取同一参数En取值相等或等效相等的转换模型和算法的等效处理,确定了Dk相应的等效相对参数De;这种等效规定和处理消除、隔离了同一参数En中所取参数其取值不相等条件下,在作二车轮状态参数相比较时,对爆胎判定的不确定作用和影响;这种参数的等效处理,定量化确定二轮所取状态参数,包括车轮制动力、转动角速度、滑移率之间可比较关系;本爆胎模式识别,通过二轮相对状态参数所取同一参数En的等值或等效的处理,并通过二轮等效相对状态参数De及参数值的比较,判定二轮中是否存在爆胎以及爆胎轮;为简化二轮参数Dk、De及参数值的比较或对比,可采用Dk、De二者间的偏差或比例模型,进行Dk与De的比较;二轮非等效、等效相对参数偏差、比例的定义为:二车轮中,车轮1的Dk1、De1与车轮2的Dk2、De2之间的差e(Dk)、e(De),二车轮中,车轮1的Dk1、De1与车轮2的Dk2、De2之间的比e(Dk)、e(De),建立车轮运动状态爆胎识别模式的特征胎压xb模型和函数模型;在设定的同一参数En中,En的所取参数为E1……En-1、En,在所取参数及参数数量不同的条件下构成系列特征胎压的集合xb,集合xb中的特征胎压具体表述方式:非等效相对参数Dk中参数取为二车轮非等效相对角速度偏差e(ωk),同一参数En中参数取为车轮制动力Qi时,非等效相对角速度偏e(ωk1)对于Qi的等效相对角速度偏e(ωd1)为特征胎压为xb1;同一参数En中的参数取为车轮制动力Qi、摩擦系数μi时,非等效相对角速度偏e(ωk2)对于Qi、μi的等效相对角速度e(ωd2)偏差为特征胎压为xb2;特征胎压xb的集合则为xb[xb1,x2];式中二轮等相对效角速度偏差e(ωe)可与等相对滑移率偏差e(Se)相互取代;车轮运动状态的爆胎判定中,状态识别模式按照车辆非制动和非驱动、驱动、制动、直行各控制状态的划分,确定特征胎压的集合xb[xb1,xb2……xbn-1,xbn]不同类型,通过车辆不同控制状态的划分,简化非等效、等效相对状态参数Dk和De之间的转换模型,适应车辆不同控制和运动状态下的爆胎判定;车轮运动状态的爆胎判定通常采用平衡车轮副二轮等效相对参数De偏差或等效相对参数比例的识别模式;平衡车轮副定义为:二车轮制动力、驱动力或和二轮所受地面作用力对车辆质心力矩的方向相反所确定的车轮副为平衡车轮副;基于特征胎压xb集合的爆胎模式识别,建立确定前和后车轴或对角线布置车轮副的爆胎轮判断逻辑,基于该判断逻辑,确定爆胎轮、爆胎车轮副或爆胎平衡车轮副;/nii、车辆转向力学状态特征胎压xc的爆胎模式识别;该模式识别由车辆转向力学状态作出;在爆胎回转力矩Mb′产生和形成过程中,爆胎状态经转向方法向转向盘转移,转向盘转角δ、转向盘转矩Mc矢量的大小和方向改变,当Mb′达到一临界状态时,可根据转向盘转角δ、转向盘转矩Mc的变动特征,识别爆胎回转力矩Mb′的产生及爆胎状态,并确定爆胎回转力矩Mb′方向;M′b的临界状态可由转向盘转角δ、转向盘转矩Mc的一临界点确定;δ、Mc的临界点表述为:爆胎过程中,转向盘转角δ、转矩Mc大小和方向改变,δ、Mc变动达到一个能识别车轮爆胎的“特定点位”,该“特定点位”称为δ、Mc的临界点;建立转向盘转角δ、转矩Mc传感器的δ、Mc及其增量Δδ、ΔMc大小和方向坐标系,规定δ、Mc的原定,判定δ、Mc、Δδ、ΔMc的方向,在Mb′形成过程中,通过δ、Mc、Δδ、ΔMc的方向,确定δ、Mc的临界点位,由此确定爆胎回转力矩Mb′方向,建立转向力学状态的爆胎模式识别逻辑,按该逻辑确定爆胎特征胎压xc;在车辆直行或转向各状态下,基于δ、Mc、Δδ、ΔMc的方向,确定爆胎回转力矩Mb′的方向,根据δ、Mc、Δδ、ΔMc的方向建立确定前和后车轴或对角线布置车轮副中的爆胎轮判断逻辑,通过该判断逻辑,确定爆胎轮和爆胎车轮副或爆胎平衡车轮副;/niii、整车运动状态特征胎压xd的爆胎模式识别;爆胎状态下,爆胎轮或和其它车轮所受地面作用力对车辆质心的不平衡横摆力矩即爆胎横摆力矩Mu′产生,导致车辆运动状态及状态参数发生变化,特征胎压xd的爆胎模式识别由整车运动状态及状态参数作出;xd以转向盘转角δ、横摆角速度ωr或横向摆动率、质心侧偏角β,或和车辆纵横向加减速度 为建模参数,在车辆正常、爆胎各工况下,实时确定车辆理论和实际横摆力矩偏差 质心侧偏角eβ(t),按 eβ(t)、或和 参数的数学模型,确定特征胎压xd爆胎模式识别;根据xd的正或负,确定车辆的过度或不足转向,通过转向盘转角δ方向及车辆过度或不足的判断逻辑,确定前和后车轴或对角线布置车轮副中的爆胎轮;/niv、车辆状态胎压pre的爆胎模式识别采用下述两种方式之一;其一、状态胎压pre特征函数的爆胎模式识别;状态胎压pre特征函数简称为状态胎压;状态胎压pre由特征胎压xb、xc、xd特征函数共同确定,状态胎压pre的数学模型为pre(xb、xc、xd),状态胎压pre模型中的特征胎压xb、xc、xd中具有同一或不同的权重;当按爆胎状态过程或/和车辆非驱动和非制动、驱动、制动控制状态和类型,进行xb、xc、xd权重的分配时,xb、xc、xd中相关参数分配予相应的权重系数;其二、状态胎压pre,以车轮运动状态、转向力学状态和整车状态中的相关参数e(ωe)和e(ωk),e(Se)和e(Sk), 和eβ(t),ay, e(Qe)和e(Qk),μi,Nzi、δ为爆胎模式识别参数,建立其参数的爆胎识别模型,按车辆爆胎状态过程或/和车辆非驱动和非制动、驱动、制动各控制状态和类型的条件和特性,实现其爆胎模式识别;上述各参数按顺序分别为:车轮副二轮等效和非等效相对角速度、等效和非等效相对滑移率、车辆横摆角速度和质心侧偏角偏差、车辆侧向加速度、车轮副二轮等效和非等效相对制动力、地面摩擦系数、车轮载荷、转向盘转角;/n②、爆胎状态阶段的爆胎判定/ni、车轮状态的爆胎判定;该爆胎判定为特征胎压xb的爆胎判定;基于车轮运动状态参数,采用前和后车轴或对角线布置车轮副的左、右轮等效相对参数偏差e(De)的对比,包括等效相对角速度偏差e(ωe)或等效相对滑移率偏差e(ωe)的对比,按车辆非驱动和非制动、驱动、制动及直行各控制状态和类型,进行特征胎压xb的爆胎模式识别;以e(ωe)或e(ωe)为建模参数,建立xb的爆胎判定模型;该判定模型包括逻辑门限模型,设定门限阈值,当xb确定的值达到门限阈值时,爆胎判定成立,确定爆胎、爆胎车轮和爆胎车轮副;/nii、车辆转向力学状态的爆胎判定;/n该爆胎判定为特征胎压xc的爆胎判定;基于车辆转向力学状态参数,采用转向方法转向力学状态的爆胎模式识别逻辑,按该逻辑确定特征胎压xc,实现爆胎模式识别;xc的模式识别或者采用爆胎回转力矩Mb′为参数爆胎模型识别确定;在车辆直行或转向各状态下,基于δ、Mc、Δδ、ΔMc的方向,确定爆胎回转力矩Mb′的方向,根据δ、Mc、Δδ、ΔMc的方向,建立确定前和后车轴或对角线布置车轮副中的爆胎轮判断逻辑;按判断逻辑,爆胎判定成立,确定爆胎轮、爆胎车轮副或爆胎平衡车轮副;/niii、整车运动状态的爆胎判定/n该爆胎判定为特征胎压xd的爆胎判定;基于整车运动状态模式识别,建立特征胎压xd确定爆胎判定模型;判定模型包括逻辑门限模型,设定门限阈值,xd的值达到其门限阈值,判定为爆胎,否则爆胎判定不成立;根据xd的正或负,确定车辆的过度或不足转向,通过转向盘转角δ的方向及车辆的过度或不足的判断逻辑,确定前和后车轴或对角线布置车轮副中的爆胎轮;/niv、车轮运动状态、整车状态联合爆胎判定/n该爆胎判定由车轮运动状态、整车状态构成联合模式识别;该爆胎判定为状态胎压pre的pre[xb,xd]的爆胎判定,pre为xb,xd的函数模型;设定pre逻辑门限模型及门限阈值,pre的值达到其门限阈值,爆胎判定成立,否则爆胎判定不成立;基于车辆非驱动和非制动、驱动、制动及直行各控制状态和类型,车辆的过度或不足转向,确定爆胎轮、爆胎车轮副或爆胎平衡车轮副;/nv、对爆胎判定逻辑赋值,用数学符号的正负“+”、“-”表示是否爆胎,电控过程中逻辑符号(+、-)用高、低电平或特定的逻辑符号代码(主要包括数字、数码等)表示;爆胎判定成立爆胎控制器或中央主控计算机发出爆胎信号I;/n③、爆胎控制阶段的爆胎模式识别;该模式识别基于爆胎控制状态,采用爆胎控制中的车轮、转向、整车控制参数;/ni、车轮爆胎控制模式识别;以爆胎控制中的车轮差动制动力Qi、角加减速度 滑移率Si之一为建模参数,采用车轮副二轮差动制动相对制动力偏差eq(t)、角加减速度偏差eω(t)或滑移率偏差es(t),建立eq(t)、eω(t)、es(t)之一的车轮爆胎控制特征胎压xb的模式识别及模型,按其模型,确定特征胎压xb模式识别的值;/nii、爆胎转向控制模式识别;以车辆爆胎控制转向的爆胎回转力矩M′b、或正常与爆胎工况下转向轮所受地面回转力矩Mk1、Mk2之间的偏差 为建模参数,建立其参数的车轮转向爆胎控制特征胎压xc模式识别和模型,按其模型,确定特征胎压xc模式识别之一的值;/niii、爆胎整车控制模式识别;以整车爆胎控制的横摆力矩偏差 质心侧偏角偏差eβ(t)、或和车辆在一定车速及转向角状态下正常与爆胎工况的侧向加速度偏差为建模参数,建立整车爆胎控制的特征胎压xd模式识别和模型,按其模型,确定特征胎压xc模式识别的值;/niv、车轮、转向和整车控制参数的爆胎联合模式识别;该模式识别为特征胎压xb、xc、xd或xb和xd的联合模式识别,即状态胎压pre[xb,xc,xd]、pre[xb,xd]的模式识别;建立参数xb,xd或和xc的状态胎压pre模型,按其模型,确定pre模式识别的值;/n④、爆胎控制阶段的爆胎判定;爆胎控制过程中,爆胎状态特征及其特征函数xb、xc、xd的值,在各特征函数xb、xc、xd中相互转移;鉴于爆胎特征及特征值的转移,其爆胎判定通常采用xb、xc、xd中的相关参数,建立爆胎判定模型,基于车辆非驱动和非制动、驱动、制动及直行各控制状态和类型,进行爆胎判定;爆胎控制阶段的爆胎判定采用状态胎压pre[xb,xc,xd]或pre[xb,xd]判定模型;该判定模型采用逻辑门限模型,设定门限阈值,当其状态胎压pre确定的值达设定门限阈值时,维持爆胎控制中的爆胎判定,车辆继续进行爆胎控制;当pre的值未达到该门限阈值,车辆退出爆胎控制;按本方法确定的爆胎判定构成为爆胎安全控制的基础。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吕杉;吕柏言,未经吕杉;吕柏言许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910388016.7/,转载请声明来源钻瓜专利网。
- 上一篇:汽车爆胎安全稳定控制系统
- 下一篇:一种无人驾驶汽车车载系统组成方法