[发明专利]面向TRIZ发明原理的中文专利分类方法、系统及储存介质在审

专利信息
申请号: 201910413039.9 申请日: 2019-05-17
公开(公告)号: CN110162631A 公开(公告)日: 2019-08-23
发明(设计)人: 黄芸茵;常会友 申请(专利权)人: 中山大学
主分类号: G06F16/35 分类号: G06F16/35;G06N3/04;G06N3/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 黄启文
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 本发明涉及一种面向TRIZ发明原理的中文专利分类方法,包括以下内容:获取专利文本数据构建训练数据集,对训练数据集中的专利文本进行基于TRIZ发明原理的标注;对训练数据集中的专利文本进行去除无意义符号、去除非中文、分词、去除停用词的预处理,然后将得到的词语投射到低维的向量空间,得到词向量表示;构建Bi‑LSTM模型,将训练数据集中的专利文本的词向量表示输入至Bi‑LSTM模型中对其进行训练;获取待分类的专利文本,将待分类的专利文本的词语投射到低维的向量空间,得到词向量表示,将词向量表示输入至Bi‑LSTM模型中,Bi‑LSTM模型输出待分类的专利文本的分类结果。
搜索关键词: 专利文本 词向量 训练数据 向量空间 专利分类 低维 投射 去除 分类 中文 词语 预处理 训练数据集 储存介质 分类结果 数据构建 意义符号 停用词 分词 构建 标注 输出
【主权项】:
1.一种面向TRIZ发明原理的中文专利分类方法,其特征在于:获取专利文本数据构建训练数据集,对训练数据集中的专利文本进行基于TRIZ发明原理的标注;将训练数据集中的专利文本的词语投射到低维的向量空间,得到词向量表示;构建Bi‑LSTM模型,将训练数据集中的专利文本的词向量表示输入至Bi‑LSTM模型中对其进行训练;获取待分类的专利文本,将待分类的专利文本的词语投射到低维的向量空间,得到词向量表示,将词向量表示输入至Bi‑LSTM模型中,Bi‑LSTM模型输出待分类的专利文本的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910413039.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top